Centrifuge v0.35.0 版本发布:Redis 连接优化与通道批量处理增强
Centrifuge 是一个高性能的实时消息引擎,采用 Go 语言编写,专为构建可扩展的实时应用程序而设计。它提供了 WebSocket 和 SSE 等协议支持,内置了多种消息传递模式,能够处理大规模并发连接和消息路由。最新发布的 v0.35.0 版本带来了几项重要改进,特别是在 Redis 连接处理和消息批量传输方面进行了优化。
Redis 连接方案全面升级
新版本对 Redis 连接处理进行了重大改进,主要体现在以下两个方面:
-
支持 rediss:// 协议:现在 Centrifuge 不仅支持传统的
redis://协议前缀,还新增了对rediss://协议的支持。rediss://是 Redis 的安全连接协议,相当于 HTTPS 之于 HTTP,它会在客户端和 Redis 服务器之间建立 TLS 加密连接,确保数据传输的安全性。 -
自动检测 Redis 集群模式:现代云服务提供商(如 AWS ElastiCache、Azure Cache for Redis 等)通常为用户提供
redis://host:port或rediss://host:port格式的连接字符串,这些连接背后可能是单机 Redis 实例,也可能是 Redis 集群。v0.35.0 版本实现了自动检测机制,能够根据提供的连接字符串自动识别底层是单机 Redis 还是 Redis 集群,无需用户额外配置。这使得 Centrifuge 的 Redis Broker 更加"云原生友好",简化了在云环境中的部署流程。
通道级批量处理机制
v0.35.0 引入了一个实验性的新功能——通道级批量处理(Channel Batch)。这项功能通过 ChannelBatchConfig 配置项启用,它为每个通道创建专门的写入缓冲区,实现消息的批量处理。
在传统的消息传输模式中,每条消息都会立即发送,这会导致频繁的系统调用和网络 I/O 操作。当某个通道消息量特别大时(如高频更新的股票行情通道),这种模式会产生显著的性能开销。
通道级批量处理通过以下方式优化性能:
- 在通道级别缓冲消息,减少系统调用次数
- 合并多个小消息为更大的数据包,提高网络利用率
- 降低 CPU 使用率,特别是在高消息频率的通道中
需要注意的是,这种优化是以增加少量内存开销和消息延迟为代价的,因为消息需要在缓冲区中等待一小段时间才能被发送。开发者需要根据具体应用场景权衡是否启用此功能。
依赖更新与兼容性
v0.35.0 版本将 rueidis 客户端库升级到了 v1.0.56 版本,这是一个高性能的 Redis 客户端,为 Centrifuge 提供了更好的 Redis 连接管理能力。同时,该版本将最低支持的 Go 语言版本提升至 1.23,开发者需要注意升级本地开发环境。
总结
Centrifuge v0.35.0 版本通过改进 Redis 连接处理和引入通道级批量处理机制,进一步提升了系统的性能和易用性。这些改进特别适合部署在云环境中的大规模实时应用,能够更好地处理高并发、高频率的消息场景。开发者现在可以更简单地集成云服务商提供的 Redis 服务,并通过通道级批量处理优化高负载通道的性能表现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00