首页
/ Data-Juicer v1.0.3发布:更强大的分布式MinHashLSH去重与后调优数据处理

Data-Juicer v1.0.3发布:更强大的分布式MinHashLSH去重与后调优数据处理

2025-06-13 03:33:34作者:卓炯娓

Data-Juicer是一个专注于数据清洗和预处理的开源工具,旨在为机器学习和大模型训练提供高质量的数据集。该项目提供了丰富的操作算子(Operators)来处理文本数据,包括清洗、过滤、转换等多种功能。最新发布的v1.0.3版本带来了多项重要更新,特别是在分布式去重和后调优数据处理方面有了显著提升。

核心更新亮点

分布式MinHashLSH去重器

v1.0.3版本引入了一个基于Ray的MinHashLSH去重器,这是一个重大技术突破。该去重器实现了基于Ray Actor的多进程Union-Find集合,并采用了BTS算法(Balanced Tree Splitting)来完成等价类合并。这种设计使得大规模数据集去重变得更加高效和可扩展。

MinHashLSH(Locality-Sensitive Hashing)是一种常用于近似最近邻搜索和去重的算法。新版本通过分布式计算框架Ray实现了算法并行化,显著提升了处理大规模数据集时的性能。Union-Find数据结构的高效实现确保了在分布式环境下也能正确合并相似的文档。

后调优数据集格式支持

针对大模型微调场景,新版本增加了对后调优数据集格式的支持。Data-Juicer选择Query-Response格式作为后调优数据集的中间格式,这种格式特别适合对话和问答类任务。

同时,项目团队优化了整体的中间格式结构,新增了metastats字段,以更好地支持各种数据集格式。这些改进使得Data-Juicer能够更灵活地处理不同类型的数据集,同时也为后续分析提供了更多元信息。

为了方便用户使用,新版本还提供了多种格式转换工具,支持将常见数据集格式转换为Data-Juicer格式,以及反向转换。

新增后调优数据处理算子

v1.0.3版本新增了10个专门用于处理后调优数据集的算子,这些算子能够对对话数据进行更精细的分析:

  1. 意图检测类

    • dialog_intent_detection_mapper:识别对话中用户的意图
    • query_intent_detection_mapper:识别查询中的用户意图
  2. 情感分析类

    • dialog_sentiment_detection_mapper:检测对话中的用户情感
    • query_sentiment_detection_mapper:检测查询中的用户情感
    • dialog_sentiment_intensity_mapper:量化用户情感强度(默认范围-5到5)
  3. 主题识别类

    • dialog_topic_detection_mapper:识别对话主题
    • query_topic_detection_mapper:识别查询主题
  4. 元数据处理类

    • meta_tags_aggregator:合并相似的元标签
    • tags_specified_field_selector:基于指定字段标签筛选样本
    • naive_reverse_grouper:将批处理样本拆分为单个样本

这些新算子使得Data-Juicer能够对对话数据进行更深入的分析和处理,为构建高质量的对话系统提供了有力支持。

GPU算子性能优化

新版本还支持了Ray Actor模式运行GPU算子,这一改进显著提升了GPU利用率,使得基于GPU的数据处理操作更加高效。对于需要大量计算的操作(如文本嵌入、模型推理等),这一优化可以带来明显的性能提升。

技术实现细节

在分布式MinHashLSH去重器的实现中,项目团队采用了BTS算法来处理等价类合并问题。这种算法通过平衡树分裂策略,有效地解决了分布式环境下合并相似文档的挑战。Ray框架的使用则确保了计算任务能够在多节点上高效并行执行。

在后调优数据处理方面,新版本通过引入中间格式和转换工具,建立了一套完整的数据处理流水线。Query-Response格式的设计考虑了大模型微调的实际需求,使得处理后的数据能够直接用于训练。

应用场景

这些更新使得Data-Juicer在以下场景中表现更加出色:

  1. 大规模数据集去重:分布式MinHashLSH去重器特别适合处理TB级别的文本数据集,如Common Crawl等网络爬取数据。

  2. 对话系统开发:新增的后调优算子为构建高质量的对话系统提供了全套工具,从意图识别到情感分析一应俱全。

  3. 大模型微调:优化的数据格式和转换工具简化了从原始数据到训练数据的处理流程,加速了模型开发周期。

总结

Data-Juicer v1.0.3通过引入分布式去重、完善后调优数据处理能力以及优化GPU算子性能,进一步巩固了其作为专业数据预处理工具的地位。这些更新不仅提升了工具的性能和功能,也扩展了其应用场景,使其能够更好地服务于大模型训练和数据科学领域。

对于需要进行大规模数据清洗和预处理的团队来说,Data-Juicer v1.0.3提供了一个强大而灵活的工具集,能够显著提高数据准备工作的效率和质量。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8