Axon深度学习框架中二元交叉熵损失函数的问题分析与解决
2025-07-10 15:36:18作者:宣利权Counsellor
在Elixir生态系统的深度学习框架Axon中,近期发现了一个关于二元交叉熵损失函数(binary_cross_entropy)的重要问题。本文将深入分析该问题的表现、原因以及解决方案,帮助开发者更好地理解和使用Axon框架中的损失函数。
问题现象
开发者在使用Axon框架训练模型时发现,当使用二元交叉熵损失函数时,模型在训练过程中出现了损失值不断上升的反常现象。具体表现为:
- 在Axon 0.4.1版本中运行正常的模型,在更高版本中出现训练失败
- 损失函数值随着训练轮次增加而上升,而非预期的下降
- 模型性能指标(如精确率、召回率)迅速恶化至零值
问题根源
经过Axon核心开发团队的调查,发现问题源于0.6.1版本中引入的一个关于层操作元数据的变更。这个变更意外导致了二元交叉熵损失函数计算路径的错误,使得梯度计算出现异常。
值得注意的是,这个问题在以下情况下不会出现:
- 使用Axon 0.4.1或0.6.0版本
- 使用分类交叉熵损失函数(categorical_cross_entropy)配合softmax激活函数
- 使用二元交叉熵时设置from_logits: true参数并移除最终的sigmoid激活
技术细节
二元交叉熵损失函数通常用于二分类问题,其数学表达式为:
L = -[y*log(p) + (1-y)*log(1-p)]
其中y是真实标签,p是预测概率。在神经网络中,通常会在最后一层使用sigmoid激活函数将输出转换为概率值。
问题的本质在于框架内部计算梯度时路径选择错误,导致反向传播无法正确更新权重参数。这种问题在深度学习框架开发中较为常见,通常是由于计算图构建或自动微分实现中的细微错误导致的。
解决方案
开发团队已经修复了这个问题。对于遇到类似问题的开发者,可以采取以下临时解决方案:
- 降级到Axon 0.6.0版本
- 改用分类交叉熵配合softmax激活的方案
- 使用二元交叉熵时添加from_logits: true参数并移除最终sigmoid激活
其中第三种方案是推荐的长期解决方案,因为:
- 从数值稳定性角度考虑更优
- 减少了sigmoid和交叉熵计算之间的冗余操作
- 避免了可能的数值下溢问题
最佳实践建议
基于这一问题的经验,建议开发者在Axon框架中使用损失函数时注意以下几点:
- 对于二分类问题,优先考虑使用from_logits: true的二元交叉熵
- 定期检查框架版本更新日志,了解可能影响训练行为的变更
- 建立模型性能基准,在新版本中验证模型行为是否一致
- 对于关键任务,考虑固定依赖版本以避免意外变更
总结
深度学习框架中的损失函数实现细节可能对模型训练产生重大影响。Axon团队对此问题的快速响应展示了开源社区解决问题的效率。开发者应当理解不同损失函数的适用场景和实现细节,才能在遇到问题时快速诊断并解决。
随着Elixir生态中机器学习工具的不断成熟,这类问题将逐渐减少,但保持对底层原理的理解仍然是构建可靠机器学习系统的关键。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1