Narwhals v1.41.0版本发布:增强时区处理与表达式功能
Narwhals是一个专注于数据处理的Python库,它提供了跨多种计算引擎的统一API接口,包括Spark、DuckDB、Ibis等。该项目旨在简化大数据处理流程,让开发者能够用一致的语法操作不同后端的数据处理引擎。
时区处理能力全面升级
本次v1.41.0版本在时区处理方面做出了重要改进。对于PySpark和DuckDB后端,现在能够正确反映连接时区信息到Datetime对象中。新增了两个关键方法:
convert_time_zone
方法:允许用户在不同时区之间转换时间戳replace_time_zone
方法:可以替换现有时间戳的时区信息,特别值得注意的是现在支持传入None参数来移除时区信息
这些改进使得Narwhals在处理跨时区数据时更加灵活和准确,特别是在全球化应用场景中尤为重要。
表达式功能增强
在表达式处理方面,v1.41.0版本为SparkLikeExprDateTimeNamespace
增加了to_string
方法,这为日期时间对象的字符串表示提供了更多控制能力。同时,修复了truncate
方法在处理带时区的时间戳时的问题,确保DuckDB后端能够正确执行这一操作。
错误处理与用户体验优化
新版本引入了更友好的错误消息机制,特别是在处理Kinder顺序依赖关系时,错误提示更加清晰明了。此外,修复了pass_through=True
与eager_only=True
参数交互时的问题,提升了API的稳定性和一致性。
类型系统与代码质量提升
开发团队在代码质量方面做了大量工作:
- 实现了100%的类型覆盖率检查,使用Pyright-cov工具强制执行
- 简化了多处代码结构,如统一使用
check_columns_exist
方法检查列存在性 - 优化了类型兼容性模块,增加了
_typing_compat
模块 - 重命名了多处
_input
参数为更具表达力的expr
这些改进不仅提升了代码的可维护性,也为开发者提供了更好的类型提示和代码补全体验。
测试与持续集成改进
在持续集成方面,团队修复了多项测试问题,包括:
- 修复了cudf测试问题
- 移除了过时的cudf预期失败标记
- 修复了PySpark 4.0的兼容性问题
- 优化了原生命名空间测试
这些改进确保了新版本的稳定性和向后兼容性。
文档完善
文档方面新增了关于空聚合操作的专门页面,帮助开发者更好地理解和使用相关功能。
总结
Narwhals v1.41.0版本在时区处理、表达式功能、错误处理和代码质量等方面都有显著提升。这些改进使得这个统一数据处理API库更加成熟和可靠,特别适合需要在多种计算引擎间切换的项目使用。开发团队对类型系统和测试覆盖率的重视,也体现了项目对长期维护和稳定性的承诺。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









