EntityFramework Core 中如何正确使用原生SQL查询获取记录数
在使用EntityFramework Core进行数据库操作时,有时我们需要直接执行原生SQL查询来获取特定结果。本文将详细介绍如何正确使用原生SQL查询来获取表中的记录数,并解释其中的技术细节。
常见错误场景
许多开发者尝试使用以下方式获取记录数:
private const string FINANCER_COUNT_SQL_QUERY = "SELECT COUNT(*) FROM Financers";
var total = await _context.Database.SqlQueryRaw<int>(FINANCER_COUNT_SQL_QUERY).FirstAsync();
这种方式会导致SQLite错误:"no such column: s.Value"。这个错误的原因是EntityFramework Core在底层处理查询结果时的特殊要求。
问题根源分析
当使用FirstAsync()或类似方法时,EntityFramework Core会在原生SQL查询外层添加额外的SQL逻辑(如在SQL Server上添加TOP子句)。此时EF Core要求查询结果必须包含一个名为"Value"的列,因为它不会解析你提供的SQL语句,只是将其作为子查询包装。
正确解决方案
有两种方式可以正确获取记录数:
方法一:添加AS Value别名
private const string FINANCER_COUNT_SQL_QUERY = "SELECT COUNT(*) AS Value FROM Financers";
var total = await _context.Database.SqlQueryRaw<int>(FINANCER_COUNT_SQL_QUERY).FirstAsync();
这种方法明确告诉EF Core查询结果中的列名,使其能够正确映射。
方法二:使用ToListAsync后再获取结果
private const string FINANCER_COUNT_SQL_QUERY = "SELECT COUNT(*) FROM Financers";
var results = await _context.Database.SqlQueryRaw<int>(FINANCER_COUNT_SQL_QUERY).ToListAsync();
var total = results.FirstOrDefault();
这种方法避免了EF Core对查询的额外包装,但需要额外的内存操作。
技术原理深入
EntityFramework Core在执行原生SQL查询时,会根据后续的操作方法决定如何处理查询:
-
当使用
FirstAsync()、SingleAsync()等方法时,EF Core会在数据库层面添加限制逻辑,这需要查询结果有明确的列名映射。 -
当使用
ToListAsync()等方法时,EF Core会直接执行原始SQL,不添加任何额外逻辑。 -
对于标量查询(如COUNT),EF Core期望结果集中有一个名为"Value"的列来进行映射。
最佳实践建议
-
对于简单的标量查询,推荐使用方法一,既简洁又高效。
-
对于复杂查询,可以考虑使用方法二,特别是当查询本身已经包含了限制逻辑时。
-
在生产环境中,建议为所有SQL查询中的列添加明确的别名,提高代码可读性和可维护性。
-
考虑将常用查询封装为存储过程或数据库函数,通过EF Core调用,可以获得更好的性能和可维护性。
通过理解这些原理和实践,开发者可以更有效地在EntityFramework Core中使用原生SQL查询,特别是处理像记录数统计这样的常见需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00