在GGML项目中优化视觉Transformer内存占用的实践
2025-05-18 03:14:01作者:明树来
背景介绍
GGML是一个专注于在CPU上高效运行机器学习模型的库,特别适合资源受限的环境。在使用GGML实现视觉Transformer(ViT)模型时,开发者经常会遇到内存占用过高的问题,尤其是在处理大尺寸输入图像和多层Transformer结构时。
问题分析
在实现一个24层的视觉Transformer时,输入图像尺寸为1120x1120x3,每层Transformer处理6401x1024的特征图。其中注意力机制会产生多个6400x6400x16的中间张量,导致内存需求急剧增长。在没有优化的情况下,128GB内存甚至都无法满足计算需求。
内存管理机制
GGML提供了两种主要的内存管理方式:
- 显式分配:通过
ggml_backend_alloc_ctx_tensors函数为计算图中的所有张量分配内存 - 图分配器(Graph Allocator):智能地重用内存空间,减少峰值内存使用
优化方案
1. 正确使用图分配器
图分配器是GGML中推荐的内存管理方式,它能够分析计算图的依赖关系,智能地重用不再需要的中间结果所占用的内存空间。使用步骤如下:
// 创建图分配器
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
// 预留内存空间
ggml_gallocr_reserve(allocr, gf);
// 为计算图分配内存
ggml_gallocr_alloc_graph(allocr, gf);
// 执行计算
ggml_backend_graph_compute(backend, gf);
2. 避免双重分配
一个常见的错误是同时使用显式分配和图分配器,这会导致内存浪费:
// 错误做法:这会为所有中间张量分配独立的内存
cv_model.compute_data = ggml_backend_alloc_ctx_tensors(cv_model.ctx_compute, cv_model.backend);
// 正确做法:仅使用图分配器
ggml_gallocr_alloc_graph(allocr, gf);
3. 中间结果处理
使用图分配器后,中间结果的内存会被重用,因此不能直接保存指向这些张量的指针。如果需要保存中间结果,应该:
- 在计算图中显式定义输出节点
- 使用
ggml_build_forward_expand将需要的中间结果加入输出 - 在执行计算后立即保存结果数据
性能对比
优化前后内存使用对比:
| 优化方式 | 24层内存占用 | 计算时间 |
|---|---|---|
| 显式分配 | >128GB (OOM) | - |
| 图分配器 | ~3GB | 75秒(16核) |
最佳实践建议
- 对于多层Transformer结构,务必使用图分配器
- 初始化计算上下文时设置
no_alloc=true标志 - 合理设置GGML上下文的内存大小参数
- 在多核CPU上运行时,调整线程数以获得最佳性能
- 对于大模型,考虑分阶段构建和计算图
总结
通过正确使用GGML的图分配器机制,我们成功将24层视觉Transformer的内存需求从超过128GB降低到约3GB,同时保持了合理的计算速度。这一优化使得在普通工作站上运行大型视觉Transformer模型成为可能,为计算机视觉任务的部署提供了新的可能性。
对于GGML新手来说,理解并正确使用内存管理机制是项目成功的关键。图分配器不仅解决了内存问题,还保持了GGML高效计算的特性,是处理复杂深度学习模型的利器。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
661