FantasticGNU/UniVAD项目中的Vision Transformer模型解析
2025-07-08 06:26:07作者:胡唯隽
概述
本文将深入解析FantasticGNU/UniVAD项目中使用的Vision Transformer(ViT)模型实现。ViT是一种将自然语言处理中成功的Transformer架构应用于计算机视觉任务的创新方法,它完全摒弃了传统CNN结构,直接处理图像块(patch)序列。
核心组件解析
1. DropPath机制
DropPath是一种正则化技术,也称为Stochastic Depth(随机深度)。它在训练过程中随机"丢弃"整个网络层,迫使网络学习更鲁棒的特征表示。
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
2. 多层感知机(MLP)模块
MLP模块是Transformer中的标准组件,包含两个全连接层和GELU激活函数:
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
3. 自注意力机制(Attention)
自注意力机制是Transformer的核心,它允许模型关注输入序列的不同部分:
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
...
4. Transformer块(Block)
每个Transformer块包含自注意力层和前馈网络(MLP),并应用了残差连接和层归一化:
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, ...)
self.drop_path = DropPath(drop_path)
self.norm2 = norm_layer(dim)
self.mlp = Mlp(...)
图像到序列的转换
Vision Transformer需要将2D图像转换为1D序列,这是通过PatchEmbed模块实现的:
class PatchEmbed(nn.Module):
""" Image to Patch Embedding """
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
num_patches = (img_size // patch_size) * (img_size // patch_size)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
完整的Vision Transformer架构
VisionTransformer类整合了所有组件,构建完整的模型:
class VisionTransformer(nn.Module):
def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):
super().__init__()
self.patch_embed = PatchEmbed(...)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(...)
self.blocks = nn.ModuleList([Block(...) for _ in range(depth)])
self.norm = norm_layer(embed_dim)
模型变体
项目提供了三种不同规模的ViT模型变体:
- ViT-Tiny: 小型模型,适用于资源受限环境
- ViT-Small: 中等规模模型,平衡性能和计算成本
- ViT-Base: 基础规模模型,提供更好的性能
def vit_tiny(patch_size=16, **kwargs):
return VisionTransformer(patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, ...)
def vit_small(patch_size=16, **kwargs):
return VisionTransformer(patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, ...)
def vit_base(patch_size=16, **kwargs):
return VisionTransformer(patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, ...)
DINO头部结构
DINOHead是一个特殊的投影头,用于自监督学习任务:
class DINOHead(nn.Module):
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256):
super().__init__()
# 构建多层MLP
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
技术亮点
- 位置编码插值: 允许模型处理不同分辨率的输入图像
- 随机深度衰减: 随着网络深度增加,DropPath的概率线性增加
- 层归一化: 在每个残差块前后应用层归一化
- 多头注意力: 并行计算多个注意力头,捕获不同特征
应用场景
在FantasticGNU/UniVAD项目中,这个Vision Transformer实现可能用于:
- 视频异常检测的特征提取
- 时空信息的建模
- 跨模态学习
- 自监督预训练
总结
本文详细解析了FantasticGNU/UniVAD项目中使用的Vision Transformer实现。通过模块化设计,该实现提供了灵活的配置选项,可以适应不同规模和需求的视觉任务。特别值得注意的是其对自监督学习的支持,通过DINOHead等组件实现了高效的特征学习。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8