【亲测免费】 Mist-v2 开源项目使用教程
2026-01-23 04:12:53作者:柏廷章Berta
1. 项目介绍
Mist-v2 是一个强大的图像预处理工具,旨在保护艺术作品的风格和内容不被最先进的 AI-for-Art 应用程序模仿。通过向图像添加水印,Mist 使这些图像对于 AI-for-Art 应用程序的模型来说变得不可识别和不可模仿。尝试通过 AI-for-Art 应用程序模仿这些经过 Mist 处理的图像将是无效的,并且输出图像将变得混乱且无法作为艺术品使用。
2. 项目快速启动
2.1 环境准备
在运行 Mist-v2 之前,请确保您的系统满足以下要求:
- 安装了 Anaconda。
- 如果您使用 GPU 版本,需要 NVIDIA GPU(Ampere 架构或更高级),且 VRAM 大于 6GB。
- 如果您使用 CPU 版本,可以在中等运行速度下尝试。
2.2 克隆项目
首先,克隆 Mist-v2 项目到您的本地:
git clone https://github.com/psyker-team/mist-v2.git
cd mist-v2
2.3 安装环境
创建并激活 Conda 环境,然后安装所需的依赖项:
conda create -n mist-v2 python=3.10
conda activate mist-v2
pip install -r requirements.txt
2.4 运行 Mist-v2
2.4.1 在 GPU 上运行
accelerate launch attacks/mist.py --cuda --low_vram_mode --instance_data_dir $INSTANCE_DIR --output_dir $OUTPUT_DIR --class_data_dir $CLASS_DATA_DIR --instance_prompt $PROMPT --class_prompt $CLASS_PROMPT --mixed_precision bf16
2.4.2 在 CPU 上运行
accelerate launch attacks/mist.py --instance_data_dir $INSTANCE_DIR --output_dir $OUTPUT_DIR --class_data_dir $CLASS_DATA_DIR --instance_prompt $PROMPT --class_prompt $CLASS_PROMPT --mixed_precision bf16
2.5 参数说明
$INSTANCE_DIR: 输入干净图像的目录,目标是向它们添加对抗性噪声。$OUTPUT_DIR: 输出对抗性示例(经过 Mist 处理的图像)的目录。$CLASS_DATA_DIR: 用于 Dreambooth 预先保留训练的类数据目录,必须为空。$PROMPT: 描述输入干净图像的提示,用于扰动图像。$CLASS_PROMPT: 用于生成类数据的提示,建议与$PROMPT相似。
3. 应用案例和最佳实践
3.1 保护艺术作品
Mist-v2 可以有效地保护艺术家的作品不被 AI-for-Art 应用程序模仿。通过在图像上添加水印,Mist 使这些图像对于 AI 模型来说变得不可识别和不可模仿。
3.2 防止未经授权的图像使用
艺术家和摄影师可以使用 Mist-v2 来防止他们的作品被未经授权地用于训练 AI 模型。经过 Mist 处理的图像将导致 AI 模型输出混乱的图像,从而防止未经授权的使用。
4. 典型生态项目
4.1 Dreambooth
Dreambooth 是一个用于生成个性化图像的 AI 模型。Mist-v2 可以与 Dreambooth 结合使用,以防止生成的图像被进一步用于训练其他 AI 模型。
4.2 LoRA
LoRA 是一个用于风格迁移的 AI 模型。Mist-v2 可以防止 LoRA 模型模仿经过 Mist 处理的图像,从而保护艺术家的作品不被风格迁移。
通过以上步骤,您可以快速启动并使用 Mist-v2 项目,保护您的艺术作品不被 AI-for-Art 应用程序模仿。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249