Apache DataFusion 中内联表扫描导致投影丢失的问题分析
Apache DataFusion 是一个用 Rust 编写的现代化查询引擎,它提供了高性能的 SQL 查询执行能力。在最新版本中,开发者发现了一个关于查询计划优化的关键问题:内联表扫描操作会意外地丢弃投影(projection)信息。
问题背景
在查询优化过程中,DataFusion 会对逻辑计划进行各种转换和优化。其中一个优化是将某些表扫描操作内联(inline)到查询计划中。这个优化原本是为了简化查询计划,但当表扫描操作带有投影时,优化后的计划会错误地丢失这些投影信息。
技术细节
问题的根源在于逻辑计划构建器(builder.rs)中的内联表扫描逻辑。当检测到表扫描可以内联时,代码只检查了是否存在过滤条件(filter),却忽略了投影信息。具体来说,在构建逻辑计划时,如果遇到视图表(ViewTable)的扫描操作,系统会尝试将其替换为视图定义的逻辑计划,但在这个过程中没有正确处理原始查询中的列投影。
影响范围
这个问题会影响所有使用视图表并指定列投影的查询。例如,当用户只选择视图中的部分列时,优化后的查询计划会错误地返回所有列而不是请求的列。这不仅会导致不必要的计算和内存消耗,还可能引发类型不匹配等运行时错误。
解决方案
修复方案是在内联表扫描时,不仅要检查过滤条件,还要保留原始查询中的投影信息。具体实现需要修改逻辑计划构建器中的相关代码,确保投影信息能够正确地传递到优化后的查询计划中。
验证方法
可以通过编写测试用例来验证修复效果。测试应该创建一个带有投影的视图表查询,然后检查优化后的逻辑计划是否仍然包含正确的投影信息。例如,对于一个包含两列(a和b)的视图,当只查询a列时,优化后的计划应该明确显示只投影a列。
版本影响
这个问题在DataFusion 47.0.0版本中引入,影响了从该版本开始的所有用户。对于依赖正确投影行为的应用程序,建议升级到包含修复的47.0.1或更高版本。
总结
查询优化是数据库系统的核心功能,但优化过程必须保证语义的正确性。DataFusion的这个案例提醒我们,在实现查询优化时需要考虑所有可能影响查询结果的上下文信息,包括但不限于过滤条件、投影、排序等。只有全面考虑这些因素,才能确保优化后的查询既高效又正确。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00