Apache DataFusion 中内联表扫描导致投影丢失的问题分析
Apache DataFusion 是一个用 Rust 编写的现代化查询引擎,它提供了高性能的 SQL 查询执行能力。在最新版本中,开发者发现了一个关于查询计划优化的关键问题:内联表扫描操作会意外地丢弃投影(projection)信息。
问题背景
在查询优化过程中,DataFusion 会对逻辑计划进行各种转换和优化。其中一个优化是将某些表扫描操作内联(inline)到查询计划中。这个优化原本是为了简化查询计划,但当表扫描操作带有投影时,优化后的计划会错误地丢失这些投影信息。
技术细节
问题的根源在于逻辑计划构建器(builder.rs)中的内联表扫描逻辑。当检测到表扫描可以内联时,代码只检查了是否存在过滤条件(filter),却忽略了投影信息。具体来说,在构建逻辑计划时,如果遇到视图表(ViewTable)的扫描操作,系统会尝试将其替换为视图定义的逻辑计划,但在这个过程中没有正确处理原始查询中的列投影。
影响范围
这个问题会影响所有使用视图表并指定列投影的查询。例如,当用户只选择视图中的部分列时,优化后的查询计划会错误地返回所有列而不是请求的列。这不仅会导致不必要的计算和内存消耗,还可能引发类型不匹配等运行时错误。
解决方案
修复方案是在内联表扫描时,不仅要检查过滤条件,还要保留原始查询中的投影信息。具体实现需要修改逻辑计划构建器中的相关代码,确保投影信息能够正确地传递到优化后的查询计划中。
验证方法
可以通过编写测试用例来验证修复效果。测试应该创建一个带有投影的视图表查询,然后检查优化后的逻辑计划是否仍然包含正确的投影信息。例如,对于一个包含两列(a和b)的视图,当只查询a列时,优化后的计划应该明确显示只投影a列。
版本影响
这个问题在DataFusion 47.0.0版本中引入,影响了从该版本开始的所有用户。对于依赖正确投影行为的应用程序,建议升级到包含修复的47.0.1或更高版本。
总结
查询优化是数据库系统的核心功能,但优化过程必须保证语义的正确性。DataFusion的这个案例提醒我们,在实现查询优化时需要考虑所有可能影响查询结果的上下文信息,包括但不限于过滤条件、投影、排序等。只有全面考虑这些因素,才能确保优化后的查询既高效又正确。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00