优化Jetson-Containers项目构建速度的技术方案
2025-06-27 04:45:13作者:庞眉杨Will
背景介绍
在使用jetson-containers项目构建容器镜像时,许多开发者遇到了构建速度缓慢的问题。特别是在频繁构建或需要构建多个不同镜像时,下载依赖包的时间占据了整个构建过程的大部分时间。本文将深入分析构建过程中的性能瓶颈,并提供几种有效的优化方案。
主要性能瓶颈分析
-
APT软件包下载:基础镜像和依赖包通过APT获取,每次构建都需要从远程仓库下载大量数据。
-
第三方二进制包下载:如CMake、Go语言环境等工具的安装包需要从GitHub、Google等网站下载。
-
Python包依赖:许多项目使用pip安装Python包,这些包也需要从PyPI仓库下载。
-
NVIDIA专有组件:CUDA等NVIDIA专有组件的下载速度也较慢。
优化方案
1. 本地APT缓存方案
建立一个本地APT缓存服务器是最基础的优化手段。可以使用apt-cacher-ng等工具实现:
- 安装apt-cacher-ng服务
- 配置Docker构建环境使用本地缓存服务器
- 缓存会显著减少重复下载相同软件包的时间
2. Python包缓存方案
对于Python包,项目已经实现了一个智能的缓存机制:
- 首先尝试从本地或内部PyPI服务器获取预编译的wheel包
- 如果找不到预编译包,则回退到从源码构建
- 构建完成后自动将生成的wheel包上传到缓存服务器
开发者可以部署自己的PyPI缓存服务器,并修改install.sh脚本优先使用本地缓存。
3. 第三方二进制包缓存
对于CMake、Go等工具的安装包,可以考虑以下方案:
- 在本地网络部署一个简单的静态文件服务器
- 将常用的二进制包预先下载到该服务器
- 修改Dockerfile中的下载URL指向本地服务器
4. 分层构建策略
合理利用Docker的分层构建机制:
- 将不经常变化的依赖安装步骤放在Dockerfile的前面
- 将频繁修改的代码放在后面几层
- 这样可以利用Docker的缓存机制,避免重复构建不变的部分
5. 存储优化
对于SSD空间有限的开发环境:
- 定期清理无用的中间镜像层
- 只保留正在活跃开发的镜像
- 考虑使用外部存储扩展构建缓存空间
实施建议
-
对于个人开发者,建议优先设置APT和PyPI本地缓存。
-
对于团队开发环境,可以部署完整的缓存基础设施,包括:
- APT缓存服务器
- PyPI镜像服务器
- 第三方二进制包存储
-
对于特定项目如Ollama,由于其更新频繁且安装流程特殊,建议:
- 定期手动更新基础镜像
- 考虑定制化Dockerfile以适应本地缓存环境
总结
通过实施上述优化方案,可以显著减少jetson-containers项目的构建时间。特别是对于需要频繁构建的开发环境,这些优化能够节省大量等待时间,提高开发效率。不同规模的开发团队可以根据自身需求选择合适的优化组合,平衡资源投入和性能收益。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669