madmom 项目使用教程
2024-10-09 07:11:03作者:平淮齐Percy
1. 项目介绍
madmom 是一个用 Python 编写的音频和音乐信号处理库,特别专注于音乐信息检索(MIR)任务。该库由 Johannes Kepler University 的 Department of Computational Perception 和奥地利人工智能研究所(OFAI)共同开发和使用。madmom 提供了一些音乐信息检索算法的参考实现,并且具有强大的音频处理功能。
2. 项目快速启动
2.1 安装 madmom
首先,确保你已经安装了 Python 2.7 或 Python 3.5 及以上版本,以及以下依赖包:
- numpy
- scipy
- cython
- mido
你可以通过 pip 来安装 madmom:
pip install madmom
如果你需要从源码安装,可以使用以下命令:
git clone --recursive https://github.com/CPJKU/madmom.git
cd madmom
python setup.py develop --user
2.2 使用示例
以下是一个简单的示例,展示如何使用 madmom 处理音频文件:
from madmom.audio.signal import SignalProcessor, FramedSignalProcessor
from madmom.audio.spectrogram import SpectrogramProcessor
from madmom.audio.stft import ShortTimeFourierTransformProcessor
# 定义信号处理器
signal_processor = SignalProcessor(sample_rate=44100, num_channels=1)
# 定义帧信号处理器
frame_processor = FramedSignalProcessor(frame_size=1024, hop_size=512)
# 定义 STFT 处理器
stft_processor = ShortTimeFourierTransformProcessor()
# 定义频谱图处理器
spec_processor = SpectrogramProcessor()
# 处理音频文件
signal = signal_processor('example.wav')
frames = frame_processor(signal)
stft = stft_processor(frames)
spectrogram = spec_processor(stft)
print(spectrogram)
3. 应用案例和最佳实践
3.1 音乐节奏检测
madmom 提供了强大的节奏检测功能,可以用于自动生成音乐的节拍标记。以下是一个简单的示例:
from madmom.features.beats import DBNBeatTrackingProcessor
from madmom.features.beats import RNNBeatProcessor
# 定义节奏处理器
beat_processor = RNNBeatProcessor()
beat_tracker = DBNBeatTrackingProcessor(fps=100)
# 处理音频文件
beats = beat_tracker(beat_processor('example.wav'))
print(beats)
3.2 音乐特征提取
madmom 还可以用于提取音乐的各种特征,如音高、音色等。以下是一个示例:
from madmom.features.notes import CNNNoteProcessor
# 定义音符处理器
note_processor = CNNNoteProcessor()
# 处理音频文件
notes = note_processor('example.wav')
print(notes)
4. 典型生态项目
4.1 Essentia
Essentia 是一个用于音频和音乐分析的开源库,与 madmom 类似,它也提供了丰富的音频处理功能。你可以结合使用 madmom 和 Essentia 来实现更复杂的音频分析任务。
4.2 Librosa
Librosa 是另一个流行的音频处理库,特别擅长于音乐信息检索和音频特征提取。你可以将 madmom 与 Librosa 结合使用,以实现更全面的音频分析。
4.3 TensorFlow 和 PyTorch
如果你需要进行深度学习相关的音频处理任务,可以结合 madmom 与 TensorFlow 或 PyTorch 使用。madmom 提供了一些预训练的模型,可以与这些深度学习框架无缝集成。
通过以上教程,你应该能够快速上手 madmom 项目,并利用其强大的音频处理功能进行各种音乐信息检索任务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX00
最新内容推荐
【亲测免费】 IMAPClient 项目常见问题解决方案 fMRIPrep 项目常见问题解决方案【免费下载】 Xposed-Disable-FLAG_SECURE 项目常见问题解决方案React与其他库集成:React From Zero中的简单与高级集成技巧【免费下载】 释放Nvme固态硬盘的全部潜能:Nvme通用驱动推荐 pyDOE 项目常见问题解决方案【亲测免费】 Wux Weapp 微信小程序 UI 组件库推荐 Almond 项目常见问题解决方案 【亲测免费】TaskBoard项目排坑指南:从安装到高级功能的10大痛点解决方案【亲测免费】 Arduino库:PZEM-004T v3.0 功率和能量计
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
514
3.69 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
873
538
Ascend Extension for PyTorch
Python
317
360
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
153
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.31 K
732
暂无简介
Dart
757
182
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.05 K
519