madmom 项目使用教程
2024-10-09 13:05:17作者:平淮齐Percy
1. 项目介绍
madmom 是一个用 Python 编写的音频和音乐信号处理库,特别专注于音乐信息检索(MIR)任务。该库由 Johannes Kepler University 的 Department of Computational Perception 和奥地利人工智能研究所(OFAI)共同开发和使用。madmom 提供了一些音乐信息检索算法的参考实现,并且具有强大的音频处理功能。
2. 项目快速启动
2.1 安装 madmom
首先,确保你已经安装了 Python 2.7 或 Python 3.5 及以上版本,以及以下依赖包:
- numpy
- scipy
- cython
- mido
你可以通过 pip 来安装 madmom:
pip install madmom
如果你需要从源码安装,可以使用以下命令:
git clone --recursive https://github.com/CPJKU/madmom.git
cd madmom
python setup.py develop --user
2.2 使用示例
以下是一个简单的示例,展示如何使用 madmom 处理音频文件:
from madmom.audio.signal import SignalProcessor, FramedSignalProcessor
from madmom.audio.spectrogram import SpectrogramProcessor
from madmom.audio.stft import ShortTimeFourierTransformProcessor
# 定义信号处理器
signal_processor = SignalProcessor(sample_rate=44100, num_channels=1)
# 定义帧信号处理器
frame_processor = FramedSignalProcessor(frame_size=1024, hop_size=512)
# 定义 STFT 处理器
stft_processor = ShortTimeFourierTransformProcessor()
# 定义频谱图处理器
spec_processor = SpectrogramProcessor()
# 处理音频文件
signal = signal_processor('example.wav')
frames = frame_processor(signal)
stft = stft_processor(frames)
spectrogram = spec_processor(stft)
print(spectrogram)
3. 应用案例和最佳实践
3.1 音乐节奏检测
madmom 提供了强大的节奏检测功能,可以用于自动生成音乐的节拍标记。以下是一个简单的示例:
from madmom.features.beats import DBNBeatTrackingProcessor
from madmom.features.beats import RNNBeatProcessor
# 定义节奏处理器
beat_processor = RNNBeatProcessor()
beat_tracker = DBNBeatTrackingProcessor(fps=100)
# 处理音频文件
beats = beat_tracker(beat_processor('example.wav'))
print(beats)
3.2 音乐特征提取
madmom 还可以用于提取音乐的各种特征,如音高、音色等。以下是一个示例:
from madmom.features.notes import CNNNoteProcessor
# 定义音符处理器
note_processor = CNNNoteProcessor()
# 处理音频文件
notes = note_processor('example.wav')
print(notes)
4. 典型生态项目
4.1 Essentia
Essentia 是一个用于音频和音乐分析的开源库,与 madmom 类似,它也提供了丰富的音频处理功能。你可以结合使用 madmom 和 Essentia 来实现更复杂的音频分析任务。
4.2 Librosa
Librosa 是另一个流行的音频处理库,特别擅长于音乐信息检索和音频特征提取。你可以将 madmom 与 Librosa 结合使用,以实现更全面的音频分析。
4.3 TensorFlow 和 PyTorch
如果你需要进行深度学习相关的音频处理任务,可以结合 madmom 与 TensorFlow 或 PyTorch 使用。madmom 提供了一些预训练的模型,可以与这些深度学习框架无缝集成。
通过以上教程,你应该能够快速上手 madmom 项目,并利用其强大的音频处理功能进行各种音乐信息检索任务。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K