Volcano调度器与Spark集成中的队列资源限制问题分析
2025-06-12 14:01:45作者:卓炯娓
背景介绍
在Kubernetes生态系统中,Volcano作为一款专为高性能计算场景设计的批处理调度器,与Spark的集成使用越来越普遍。然而在实际部署过程中,用户经常会遇到队列资源限制不生效的问题,特别是在提交Spark作业时,即使队列资源已超限,作业仍能继续运行而非进入pending状态。
问题现象
用户在使用Volcano v1.9.0与Spark 3.3.2集成时,配置了一个测试队列,资源上限设置为5CPU和10G内存。当提交Spark作业时,虽然作业的资源请求明显超过了队列的容量限制,但作业仍然能够运行,而不是按预期进入pending状态等待资源。
技术分析
1. 配置检查
用户最初按照文档配置了Queue资源限制和PodGroup模板:
- Queue定义中设置了
capability为5CPU和10G内存 - PodGroup中指定了
minResources为3CPU和6G内存 - 提交Spark作业时使用了Volcano调度器
2. 调度器插件机制
Volcano调度器的核心功能通过插件机制实现,其中与资源限制相关的关键插件包括:
- proportion插件:负责队列间的资源比例分配
- capacity插件:处理队列的绝对资源限制
经过深入分析发现,capacity插件实际上并不包含资源超额使用的检查逻辑,这一功能主要由proportion插件实现。
3. Spark集成特殊性
Spark与Volcano的集成方式对资源限制行为有重要影响:
- 使用
spark.kubernetes.scheduler.volcano.podGroupTemplateFile方式时,需要特别注意完整配置 - 必须显式指定
spark.kubernetes.scheduler.name=volcano参数 - 资源限制检查在Spark原生集成方式下表现不同
解决方案
1. 正确配置Spark参数
确保Spark提交命令包含以下关键配置:
--conf spark.kubernetes.scheduler.name=volcano \
--conf spark.kubernetes.scheduler.volcano.podGroupTemplateFile=/path/to/podgroup.yaml \
--conf spark.kubernetes.driver.pod.featureSteps=org.apache.spark.deploy.k8s.features.VolcanoFeatureStep \
--conf spark.kubernetes.executor.pod.featureSteps=org.apache.spark.deploy.k8s.features.VolcanoFeatureStep
2. 调度器配置优化
在Volcano调度器配置中,确保包含proportion插件以启用资源超额检查:
actions: "enqueue, allocate, backfill"
tiers:
- plugins:
- name: priority
- name: gang
- name: conformance
- plugins:
- name: proportion
- name: predicates
- name: nodeorder
3. 资源请求对齐
确保Spark作业的资源请求与队列配置相匹配:
- 检查
spark.executor.memory和spark.executor.cores设置 - 验证PodGroup中的
minResources配置 - 确认Queue的
capability设置合理
最佳实践建议
- 测试验证:在正式环境部署前,使用简单工作负载(如nginx)验证队列限制功能
- 监控机制:建立队列资源使用监控,及时发现异常情况
- 逐步调优:从保守的资源限制开始,根据实际使用情况逐步调整
- 文档参考:仔细阅读对应版本的Volcano和Spark集成文档
- 日志分析:遇到问题时,详细检查scheduler组件的日志输出
总结
Volcano与Spark的集成提供了强大的批处理调度能力,但资源限制功能的正确使用需要注意多个配置细节。通过理解调度器插件机制、正确配置Spark参数以及遵循最佳实践,可以确保队列资源限制按预期工作,避免资源超额分配的问题。这对于构建稳定可靠的大数据平台至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896