Volcano调度器与Spark集成中的队列资源限制问题分析
2025-06-12 14:01:45作者:卓炯娓
背景介绍
在Kubernetes生态系统中,Volcano作为一款专为高性能计算场景设计的批处理调度器,与Spark的集成使用越来越普遍。然而在实际部署过程中,用户经常会遇到队列资源限制不生效的问题,特别是在提交Spark作业时,即使队列资源已超限,作业仍能继续运行而非进入pending状态。
问题现象
用户在使用Volcano v1.9.0与Spark 3.3.2集成时,配置了一个测试队列,资源上限设置为5CPU和10G内存。当提交Spark作业时,虽然作业的资源请求明显超过了队列的容量限制,但作业仍然能够运行,而不是按预期进入pending状态等待资源。
技术分析
1. 配置检查
用户最初按照文档配置了Queue资源限制和PodGroup模板:
- Queue定义中设置了
capability为5CPU和10G内存 - PodGroup中指定了
minResources为3CPU和6G内存 - 提交Spark作业时使用了Volcano调度器
2. 调度器插件机制
Volcano调度器的核心功能通过插件机制实现,其中与资源限制相关的关键插件包括:
- proportion插件:负责队列间的资源比例分配
- capacity插件:处理队列的绝对资源限制
经过深入分析发现,capacity插件实际上并不包含资源超额使用的检查逻辑,这一功能主要由proportion插件实现。
3. Spark集成特殊性
Spark与Volcano的集成方式对资源限制行为有重要影响:
- 使用
spark.kubernetes.scheduler.volcano.podGroupTemplateFile方式时,需要特别注意完整配置 - 必须显式指定
spark.kubernetes.scheduler.name=volcano参数 - 资源限制检查在Spark原生集成方式下表现不同
解决方案
1. 正确配置Spark参数
确保Spark提交命令包含以下关键配置:
--conf spark.kubernetes.scheduler.name=volcano \
--conf spark.kubernetes.scheduler.volcano.podGroupTemplateFile=/path/to/podgroup.yaml \
--conf spark.kubernetes.driver.pod.featureSteps=org.apache.spark.deploy.k8s.features.VolcanoFeatureStep \
--conf spark.kubernetes.executor.pod.featureSteps=org.apache.spark.deploy.k8s.features.VolcanoFeatureStep
2. 调度器配置优化
在Volcano调度器配置中,确保包含proportion插件以启用资源超额检查:
actions: "enqueue, allocate, backfill"
tiers:
- plugins:
- name: priority
- name: gang
- name: conformance
- plugins:
- name: proportion
- name: predicates
- name: nodeorder
3. 资源请求对齐
确保Spark作业的资源请求与队列配置相匹配:
- 检查
spark.executor.memory和spark.executor.cores设置 - 验证PodGroup中的
minResources配置 - 确认Queue的
capability设置合理
最佳实践建议
- 测试验证:在正式环境部署前,使用简单工作负载(如nginx)验证队列限制功能
- 监控机制:建立队列资源使用监控,及时发现异常情况
- 逐步调优:从保守的资源限制开始,根据实际使用情况逐步调整
- 文档参考:仔细阅读对应版本的Volcano和Spark集成文档
- 日志分析:遇到问题时,详细检查scheduler组件的日志输出
总结
Volcano与Spark的集成提供了强大的批处理调度能力,但资源限制功能的正确使用需要注意多个配置细节。通过理解调度器插件机制、正确配置Spark参数以及遵循最佳实践,可以确保队列资源限制按预期工作,避免资源超额分配的问题。这对于构建稳定可靠的大数据平台至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870