Anthropic Quickstarts项目在AWS Bedrock上的部署问题解析
在使用Anthropic Quickstarts项目的computer-use-demo时,开发者可能会遇到一个常见的Bedrock服务部署问题。本文将从技术角度深入分析这个问题的成因和解决方案。
问题现象
当开发者通过Docker容器部署computer-use-demo并连接到AWS Bedrock服务时,可能会收到如下错误提示:
Error code: 400 - {'message': 'Invocation of model ID anthropic.claude-3-5-sonnet-20241022-v2:0 with on-demand throughput isn't supported. Retry your request with the ID or ARN of an inference profile that contains this model.'}
这个错误表明系统无法以按需(On-Demand)方式调用指定的Claude模型。
根本原因分析
经过深入调查,我们发现这个问题与AWS Bedrock服务的区域支持特性有关:
-
区域限制:AWS Bedrock对不同区域支持不同的推理模式。具体来说,只有us-west-2区域支持按需(On-Demand)推理模式,而其他区域如us-east-1仅支持通过推理配置文件(Inference Profile)的方式调用模型。
-
模型部署方式:Claude 3.5 Sonnet v2模型在us-east-1区域仅支持通过预配置的推理配置文件进行调用,这要求开发者必须事先创建并指定相应的推理配置文件。
解决方案
针对这个问题,我们提供两种可行的解决方案:
方案一:切换到支持按需推理的区域
最简单的解决方案是将服务部署到us-west-2区域,该区域支持Claude模型的按需调用。修改Docker运行命令如下:
docker run \
-e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
-e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
-e AWS_REGION=us-west-2 \
-e PROVIDER=bedrock \
-v $HOME/.anthropic:/home/computeruse/.anthropic \
-p 5900:5900 \
-p 8501:8501 \
-p 6080:6080 \
-p 8080:8080 \
-it ghcr.io/anthropics/anthropic-quickstarts:computer-use-demo-latest
方案二:使用推理配置文件
如果必须使用us-east-1区域,则需要:
- 在AWS Bedrock控制台创建包含目标模型的推理配置文件
- 在调用时指定该推理配置文件的ARN
- 可能需要修改Anthropic Quickstarts代码以支持推理配置文件方式的调用
最佳实践建议
-
区域选择:在项目初期就应根据业务需求选择合适的AWS区域,考虑因素包括功能支持、延迟和成本等。
-
模型调用方式:了解不同模型的调用方式限制,特别是新发布的模型版本可能有特殊的调用要求。
-
环境验证:部署前使用AWS CLI验证模型可用性,如:
aws bedrock list-foundation-models --region <your-region> -
错误处理:在应用中实现完善的错误处理机制,特别是对区域不支持等常见错误应有明确的提示和恢复方案。
总结
通过本文的分析,我们了解到AWS Bedrock服务在不同区域对模型调用方式的支持存在差异。开发者在部署Anthropic Quickstarts项目时,应当特别注意目标区域的功能支持情况,选择合适的部署方案。对于需要快速验证的场景,推荐使用us-west-2区域;对于生产环境,则应根据业务需求综合考虑区域选择和模型调用方式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C078
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00