探索未来:Self-Instruct 框架让语言模型学会自我指引
在自然语言处理的世界里,预训练的语言模型已经成为了一股不可忽视的力量。然而,如何使这些模型更好地理解和执行自然语言指令,一直是研究者们关注的焦点。为此,我们向您推荐一款名为 Self-Instruct 的开源框架,它通过利用模型自身生成的指令,有效地提升其指令跟随能力。
自我指导,无限可能
Self-Instruct 是一种创新方法,旨在增强语言模型遵循自然语言指令的能力。该框架无需大量的人工标注数据,而是依靠模型自身的生成能力,生成一系列的教学指令和相应的输入输出实例。这一过程如同一个自我强化的学习循环,使得模型能逐步理解并执行更为复杂的任务。
技术揭秘:Self-Instruct 如何工作?
Self-Instruct 的核心是一个迭代自洽算法。首先,基于初始的小规模手工编写指令集,模型会被用来生成新的指令和任务实例。经过筛选剔除低质或重复的数据后,这些新生成的内容将被加入到下一轮的训练数据中。这个过程可以反复进行,以构建一个庞大的教学数据集,用于微调语言模型,使其更加擅长遵循指令。
使用 Self-Instruct 提升模型性能
本项目提供了大约 52,000 条由模型生成的指令,以及对应的 82,000 个输入输出实例,可用于对语言模型进行指令微调。数据已整理成 GPT3 风格的格式,便于直接使用。此外,还有一套由专家编写的 252 项任务,用于评估模型的指令跟随能力。所有工具和脚本都已开放源代码,从数据生成到模型微调,再到效果验证,您可以全程参与,见证模型的进步。
快速上手
要使用 Self-Instruct 数据来微调您的语言模型,只需运行我们的finetune_gpt3.sh脚本。对于从零开始生成 Self-Instruct 数据,可按照以下步骤操作:
- 使用
generate_instructions.sh生成指令。 - 利用
is_clf_or_not.sh分类指令类型。 - 运行
generate_instances.sh生成实例。 - 最后,通过
prepare_for_finetuning.sh处理并格式化数据。
引领未来的应用
Self-Instruct 的潜力不仅在于学术研究,更在于实际的应用场景。想象一下,一个能够精确理解并执行用户指令的智能助手,无论是在日常生活的智能家居控制,还是在商业领域的自动文档生成,都将带来极大的便利。
该项目的特点在于它的自我学习能力和数据扩展性。通过不断迭代生成和筛选,模型可以适应日益多样化的指令需求,而无需大规模的人力介入。
如果你对自然语言处理的前沿技术感兴趣,或者正在寻找提高你的语言模型指令理解能力的方法,那么 Self-Instruct 绝对值得尝试。一起探索,让人工智能更加智能!
在使用 Self-Instruct 时,别忘了引用相关的研究论文:
@misc{selfinstruct,
title={Self-Instruct: Aligning Language Model with Self Generated Instructions},
author={王一忠 and 科迪·叶加内哈 and 米斯拉·斯瓦罗普 and 刘艾萨和 史诺·阿史密斯 and 卡西迪·丹尼尔 and 哈吉什伊里兹·汉娜妮},
journal={arXiv preprint arXiv:2212.10560},
year={2022}
}
现在就加入 Self-Instruct 的行列,开启你的智能指令之旅吧!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00