ROCm 6.3.1在FIPS启用系统上的哈希算法兼容性问题分析
问题背景
在基于ROCm 6.3.1构建的vLLM运行时环境中,当尝试在FIPS(Federal Information Processing Standards)启用的OpenShift集群上部署模型时,系统会抛出_hashlib.UnsupportedDigestmodError错误。这个问题特别出现在使用AMD Instinct MI300X GPU和RHEL 9.x操作系统的环境中。
错误现象
系统日志显示,当vLLM尝试初始化模型架构时,在PyTorch的hipify处理过程中遇到了哈希算法不支持的异常。具体错误信息表明,系统拒绝使用MD5哈希算法:
_hashlib.UnsupportedDigestmodError: [digital envelope routines] unsupported
错误堆栈追溯到PyTorch的hipify_python.py文件中,当尝试创建MD5哈希对象时失败。
技术分析
FIPS模式的影响
FIPS是美国联邦政府制定的一套信息安全标准,在FIPS模式下,系统会禁用被认为不够安全的加密算法,包括MD5。这是出于安全考虑,因为MD5已被证明存在安全性问题,不再适合用于安全敏感的场景。
ROCm和PyTorch的依赖关系
ROCm 6.3.1作为AMD GPU的计算平台,其PyTorch实现中包含了hipify工具,用于将CUDA代码转换为HIP代码。在这个过程中,hipify使用MD5哈希来生成唯一标识符,这在非FIPS系统上是正常工作的。
根本原因
问题的核心在于hipify工具中的Trie类初始化时无条件地使用了hashlib.md5(),而没有考虑系统可能处于FIPS模式。在FIPS启用的系统上,这种用法会被Python的hashlib模块拒绝。
解决方案
临时解决方案
对于需要立即解决问题的用户,可以通过以下方式之一临时解决:
- 在系统层面临时调整FIPS模式设置(不推荐,可能影响安全策略)
- 修改Python环境,设置
PYTHONHASHSEED环境变量(效果有限)
长期解决方案
更合理且符合安全规范的解决方案是修改hipify工具的代码,使其在FIPS环境下能够正常工作。具体方法是在哈希创建时添加usedforsecurity=False参数:
self._hash = hashlib.md5(usedforsecurity=False)
这个参数明确告诉系统该哈希不用于安全目的,从而绕过FIPS限制。
最佳实践建议
- 环境兼容性检查:在部署前检查系统是否启用了FIPS模式
- 依赖管理:确保使用的ROCm和PyTorch版本已经解决了FIPS兼容性问题
- 安全与功能平衡:在必须使用FIPS的环境中,选择已经适配的软件版本
- 持续更新:关注ROCm和PyTorch的更新日志,获取最新的FIPS兼容性改进
影响范围
这个问题主要影响:
- 使用ROCm 6.3.x在FIPS启用系统上运行PyTorch相关应用的用户
- 特别是使用vLLM等基于PyTorch的AI推理框架的场景
- RHEL/CentOS等企业级Linux发行版用户
结论
ROCm 6.3.1在FIPS环境下的哈希算法兼容性问题反映了底层软件栈与严格安全标准之间的协调需求。通过合理的代码修改和系统配置,可以在保持系统安全性的同时确保AI工作负载的正常运行。建议用户关注官方更新,或按照上述方案进行适当的调整。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00