ROCm 6.3.1在FIPS启用系统上的哈希算法兼容性问题分析
问题背景
在基于ROCm 6.3.1构建的vLLM运行时环境中,当尝试在FIPS(Federal Information Processing Standards)启用的OpenShift集群上部署模型时,系统会抛出_hashlib.UnsupportedDigestmodError错误。这个问题特别出现在使用AMD Instinct MI300X GPU和RHEL 9.x操作系统的环境中。
错误现象
系统日志显示,当vLLM尝试初始化模型架构时,在PyTorch的hipify处理过程中遇到了哈希算法不支持的异常。具体错误信息表明,系统拒绝使用MD5哈希算法:
_hashlib.UnsupportedDigestmodError: [digital envelope routines] unsupported
错误堆栈追溯到PyTorch的hipify_python.py文件中,当尝试创建MD5哈希对象时失败。
技术分析
FIPS模式的影响
FIPS是美国联邦政府制定的一套信息安全标准,在FIPS模式下,系统会禁用被认为不够安全的加密算法,包括MD5。这是出于安全考虑,因为MD5已被证明存在安全性问题,不再适合用于安全敏感的场景。
ROCm和PyTorch的依赖关系
ROCm 6.3.1作为AMD GPU的计算平台,其PyTorch实现中包含了hipify工具,用于将CUDA代码转换为HIP代码。在这个过程中,hipify使用MD5哈希来生成唯一标识符,这在非FIPS系统上是正常工作的。
根本原因
问题的核心在于hipify工具中的Trie类初始化时无条件地使用了hashlib.md5(),而没有考虑系统可能处于FIPS模式。在FIPS启用的系统上,这种用法会被Python的hashlib模块拒绝。
解决方案
临时解决方案
对于需要立即解决问题的用户,可以通过以下方式之一临时解决:
- 在系统层面临时调整FIPS模式设置(不推荐,可能影响安全策略)
- 修改Python环境,设置
PYTHONHASHSEED环境变量(效果有限)
长期解决方案
更合理且符合安全规范的解决方案是修改hipify工具的代码,使其在FIPS环境下能够正常工作。具体方法是在哈希创建时添加usedforsecurity=False参数:
self._hash = hashlib.md5(usedforsecurity=False)
这个参数明确告诉系统该哈希不用于安全目的,从而绕过FIPS限制。
最佳实践建议
- 环境兼容性检查:在部署前检查系统是否启用了FIPS模式
- 依赖管理:确保使用的ROCm和PyTorch版本已经解决了FIPS兼容性问题
- 安全与功能平衡:在必须使用FIPS的环境中,选择已经适配的软件版本
- 持续更新:关注ROCm和PyTorch的更新日志,获取最新的FIPS兼容性改进
影响范围
这个问题主要影响:
- 使用ROCm 6.3.x在FIPS启用系统上运行PyTorch相关应用的用户
- 特别是使用vLLM等基于PyTorch的AI推理框架的场景
- RHEL/CentOS等企业级Linux发行版用户
结论
ROCm 6.3.1在FIPS环境下的哈希算法兼容性问题反映了底层软件栈与严格安全标准之间的协调需求。通过合理的代码修改和系统配置,可以在保持系统安全性的同时确保AI工作负载的正常运行。建议用户关注官方更新,或按照上述方案进行适当的调整。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00