PyTorch入门教程:从基础张量操作到神经网络实现
2025-07-02 13:59:04作者:翟江哲Frasier
前言
PyTorch作为当前最流行的深度学习框架之一,以其动态计算图和Pythonic的编程风格深受研究人员和开发者的喜爱。本文将从基础概念出发,逐步介绍PyTorch的核心功能,帮助初学者快速掌握这一强大工具。
1. PyTorch基础:张量操作
张量(Tensor)是PyTorch中最基本的数据结构,可以看作是多维数组的扩展。让我们从创建各种张量开始:
import torch
# 从列表创建张量
tensor = torch.tensor([1, 2, 3, 4, 5])
# 创建全零张量
zeros = torch.zeros((3, 3)) # 3x3的零矩阵
# 创建全一张量
ones = torch.ones((2, 4)) # 2行4列的全1矩阵
# 创建单位矩阵
iden = torch.eye(2) # 2x2单位矩阵
# 创建随机张量
random = torch.rand(2, 2) # 2x2的随机矩阵(0-1均匀分布)
理解张量的维度(ndim)、形状(shape)和数据类型(dtype)非常重要:
# 标量(0维张量)
x = torch.tensor(6)
print("维度:", x.ndim) # 0
print("形状:", x.shape) # torch.Size([])
# 向量(1维张量)
x = torch.tensor([1.3, 2.2, 1.7])
print("维度:", x.ndim) # 1
print("形状:", x.shape) # torch.Size([3])
# 矩阵(2维张量)
x = torch.tensor([[1,2], [3,4]])
print("维度:", x.ndim) # 2
print("形状:", x.shape) # torch.Size([2, 2])
# 3维张量
x = torch.tensor([[[1,2],[3,4]], [[5,6],[7,8]]])
print("维度:", x.ndim) # 3
print("形状:", x.shape) # torch.Size([2, 2, 2])
2. 张量运算
PyTorch支持丰富的张量运算,包括基本的算术运算和线性代数运算:
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
# 基本运算
print(a + b) # 逐元素加法
print(a * b) # 逐元素乘法
print(a ** 2) # 逐元素平方
# 点积
print(torch.dot(a, b)) # 1*4 + 2*5 + 3*6 = 32
# 矩阵乘法
m1 = torch.tensor([[1, 2], [3, 4]])
m2 = torch.tensor([[5, 6], [7, 8]])
print(torch.mm(m1, m2)) # 矩阵乘法
3. GPU加速
PyTorch可以轻松利用GPU加速计算:
# 检查GPU是否可用
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 直接在GPU上创建张量
x = torch.tensor([1, 2, 3], device=device)
# 将CPU张量移动到GPU
y = torch.tensor([4, 5, 6])
y = y.to(device)
# 运算会自动在GPU上执行
z = x + y
4. 自动微分与梯度计算
PyTorch的自动微分功能是其核心特性之一:
# 创建需要计算梯度的张量
x = torch.tensor([2.0], requires_grad=True)
# 定义计算图
y = x ** 2 # y = x^2
# 计算梯度
y.backward()
# 访问梯度
print(x.grad) # dy/dx = 2x = 4
5. 实现简单神经网络
让我们实现一个简单的感知机:
import numpy as np
class Perceptron:
def __init__(self, input_size):
self.weights = np.random.rand(input_size)
self.bias = np.random.rand(1)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def predict(self, inputs):
summation = np.dot(inputs, self.weights) + self.bias
return self.sigmoid(summation)
# 使用示例
perceptron = Perceptron(2) # 2个输入
inputs = np.array([1, 1])
output = perceptron.predict(inputs)
print(output)
6. 实现XOR神经网络
XOR问题是神经网络的一个经典案例:
import torch.nn as nn
class XORNet(nn.Module):
def __init__(self):
super(XORNet, self).__init__()
self.hidden = nn.Linear(2, 3) # 2输入, 3个隐藏神经元
self.output = nn.Linear(3, 1) # 3输入, 1输出
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.hidden(x))
x = self.sigmoid(self.output(x))
return x
# 准备数据
X = torch.tensor([[0., 0.], [0., 1.], [1., 0.], [1., 1.]])
y = torch.tensor([[0.], [1.], [1.], [0.]])
# 创建模型
model = XORNet()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
criterion = nn.BCELoss() # 二元交叉熵损失
# 训练循环
for epoch in range(10000):
outputs = model(X)
loss = criterion(outputs, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 1000 == 0:
print(f'Epoch {epoch+1}, Loss: {loss.item():.4f}')
# 测试模型
with torch.no_grad():
test_input = torch.tensor([1., 0.])
prediction = model(test_input)
print(f"预测结果: {prediction.item():.4f}")
7. 数据加载与批处理
PyTorch提供了方便的数据加载工具:
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, X, y):
self.X = torch.FloatTensor(X)
self.y = torch.FloatTensor(y)
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
# 创建DataLoader
dataset = CustomDataset(X, y)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
# 使用批处理训练
for batch_X, batch_y in dataloader:
outputs = model(batch_X)
loss = criterion(outputs, batch_y)
# 反向传播和优化...
8. 模型保存与加载
训练好的模型可以保存供后续使用:
# 保存模型
torch.save(model.state_dict(), 'xor_model.pth')
# 加载模型
loaded_model = XORNet()
loaded_model.load_state_dict(torch.load('xor_model.pth'))
loaded_model.eval() # 设置为评估模式
结语
通过本教程,我们系统地学习了PyTorch的基础知识,从张量操作到神经网络实现。PyTorch的灵活性和易用性使其成为深度学习研究和开发的理想选择。掌握这些基础知识后,你可以进一步探索更复杂的网络结构和应用场景。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp Cafe Menu项目中link元素的void特性解析6 freeCodeCamp英语课程填空题提示缺失问题分析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133