Google Cloud DLP v6.2.0 版本发布:增强数据发现与配置文件功能
Google Cloud DLP(Data Loss Prevention)是Google云平台上用于敏感数据发现、分类和保护的重要服务。最新发布的v6.2.0版本带来了几项关键功能增强,主要集中在数据发现配置和配置文件分析方面,为组织提供了更强大的数据治理能力。
新增Dataplex Catalog数据发现动作
本次更新最显著的特点是增加了对Dataplex Catalog的支持作为数据发现配置的动作目标。这意味着用户现在可以直接将DLP的数据发现结果与Dataplex Catalog集成,实现更统一的数据治理视图。
Dataplex是Google Cloud的智能数据治理服务,能够跨数据湖、数据仓库和数据库提供统一的管理。通过这一集成,组织可以:
- 自动将DLP发现的敏感数据信息同步到Dataplex Catalog
- 在Dataplex中建立完整的敏感数据资产视图
- 实现跨服务的敏感数据治理工作流
表引用中增加项目ID支持
v6.2.0版本在表引用结构中增加了项目ID字段,这一改进使得组织级父实体能够创建单一表发现配置。具体来说:
- 解决了多项目环境下表引用不明确的问题
- 允许更精确地指定目标数据表
- 支持组织级管理员为下属项目配置数据发现策略
这一改进特别适合大型企业或拥有复杂项目结构的组织,能够实现更精细化的数据治理控制。
数据配置文件发现的新字段
新版本扩展了数据配置文件发现功能,增加了多个新字段,增强了数据分析和风险评估能力。这些新字段可能包括(但不限于):
- 更详细的数据分布统计信息
- 增强的风险评分指标
- 数据使用模式分析
- 敏感数据关联关系
这些增强使安全团队能够更全面地了解其数据资产中的敏感信息分布和风险状况,从而做出更明智的数据保护决策。
技术影响与最佳实践
对于已经使用Google Cloud DLP服务的组织,升级到v6.2.0版本后应考虑:
-
评估Dataplex集成价值:如果已在使用Dataplex,新的Catalog动作可以简化数据治理流程;如果尚未使用,可以考虑采用以实现更全面的数据治理。
-
更新表引用配置:在多项目环境中,应审查现有配置并考虑添加项目ID以提高精确性。
-
利用新配置文件字段:重新评估现有的数据风险评估模型,整合新字段以获得更全面的分析结果。
-
组织级策略规划:利用新增的项目ID支持,考虑在组织层面统一管理敏感数据发现策略。
这一版本更新体现了Google Cloud在数据治理领域持续创新的承诺,通过增强与其他服务的集成和提供更精细的控制选项,帮助客户构建更完善的数据保护体系。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00