OpenCompass项目评测数据集添加指南
2025-06-08 09:33:54作者:侯霆垣
在OpenCompass项目中添加自定义评测数据集是模型评估的重要环节。本文将以一个实际案例为基础,详细介绍如何在OpenCompass项目中正确添加新的评测数据集。
数据集添加流程
1. 创建数据集类
首先需要创建一个继承自BaseDataset的自定义数据集类。这个类主要负责数据加载和预处理工作。以下是一个典型的多选题数据集实现示例:
import csv
import os.path as osp
from datasets import Dataset, DatasetDict
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class MyDataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
dataset = DatasetDict()
for split in ['dev', 'test']:
raw_data = []
filename = osp.join(path, split, f'{name}.csv')
with open(filename, encoding='utf-8') as f:
reader = csv.reader(f)
_ = next(reader) # 跳过标题行
for row in reader:
assert len(row) == 7
raw_data.append({
'question': row[1],
'A': row[2],
'B': row[3],
'C': row[4],
'D': row[5],
'answer': row[6],
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
2. 注册数据集类
在所在目录的__init__.py文件中添加导入语句,确保数据集类能够被正确注册:
from .mydataset import * # noqa: F401, F403
3. 准备数据文件
将数据集文件放置在项目的data目录下,按照dev和test子目录组织。每个CSV文件应包含题目、选项和答案等字段。
4. 创建配置文件
配置文件是OpenCompass评估流程的核心,需要定义评估的具体参数。以下是多选题评估的典型配置:
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MyDataset
mydataset_subject_mapping = {
'agronomy': '农学',
'anatomy': '解剖学'
}
mydataset_all_sets = list(mydataset_subject_mapping.keys())
mydataset_datasets = []
for _name in mydataset_all_sets:
_ch_name = mydataset_subject_mapping[_name]
mydataset_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={
answer: dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=f"以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。\n题目:{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}"
),
dict(role="BOT", prompt=f'答案是: {answer}'),
])
for answer in ["A", "B", "C", "D"]
},
ice_token="</E>",
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
)
mydataset_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
mydataset_datasets.append(
dict(
type=MyDataset,
path="./data/mydataset/",
name=_name,
abbr=f"mydataset-{_name}",
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
test_split='test'),
infer_cfg=mydataset_infer_cfg,
eval_cfg=mydataset_eval_cfg,
))
常见问题解决
1. 数据集加载失败
如果遇到"Partitioned into 0 tasks"错误,通常是因为配置文件中的数据集变量名不符合OpenCompass的命名规范。确保配置文件中导出的数据集变量名以"_datasets"结尾。
2. 评估结果未生成
检查以下几点:
- 配置文件是否正确引用了数据集类
- 数据文件路径是否正确
- 评估配置中的输入输出列名是否与数据文件匹配
- 确保运行命令中指定的数据集名称与配置文件名称一致
3. 日志文件缺失
如果未生成日志目录,通常意味着评估流程未能正确启动。检查运行命令和配置文件,确保所有参数设置正确。
最佳实践建议
- 遵循OpenCompass的命名规范,特别是配置文件和变量名的后缀要求
- 在添加新数据集前,先参考项目中的现有数据集实现
- 使用小规模数据集进行测试,验证流程正确后再进行完整评估
- 确保数据文件的格式与代码中的解析逻辑一致
- 对于多选题评估,注意prompt模板的设计要清晰明确
通过以上步骤和注意事项,开发者可以顺利地在OpenCompass项目中添加自定义评测数据集,为模型评估提供更全面的测试基准。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
200
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694