OpenCompass项目评测数据集添加指南
2025-06-08 23:11:10作者:侯霆垣
在OpenCompass项目中添加自定义评测数据集是模型评估的重要环节。本文将以一个实际案例为基础,详细介绍如何在OpenCompass项目中正确添加新的评测数据集。
数据集添加流程
1. 创建数据集类
首先需要创建一个继承自BaseDataset的自定义数据集类。这个类主要负责数据加载和预处理工作。以下是一个典型的多选题数据集实现示例:
import csv
import os.path as osp
from datasets import Dataset, DatasetDict
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class MyDataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
dataset = DatasetDict()
for split in ['dev', 'test']:
raw_data = []
filename = osp.join(path, split, f'{name}.csv')
with open(filename, encoding='utf-8') as f:
reader = csv.reader(f)
_ = next(reader) # 跳过标题行
for row in reader:
assert len(row) == 7
raw_data.append({
'question': row[1],
'A': row[2],
'B': row[3],
'C': row[4],
'D': row[5],
'answer': row[6],
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
2. 注册数据集类
在所在目录的__init__.py文件中添加导入语句,确保数据集类能够被正确注册:
from .mydataset import * # noqa: F401, F403
3. 准备数据文件
将数据集文件放置在项目的data目录下,按照dev和test子目录组织。每个CSV文件应包含题目、选项和答案等字段。
4. 创建配置文件
配置文件是OpenCompass评估流程的核心,需要定义评估的具体参数。以下是多选题评估的典型配置:
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MyDataset
mydataset_subject_mapping = {
'agronomy': '农学',
'anatomy': '解剖学'
}
mydataset_all_sets = list(mydataset_subject_mapping.keys())
mydataset_datasets = []
for _name in mydataset_all_sets:
_ch_name = mydataset_subject_mapping[_name]
mydataset_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={
answer: dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=f"以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。\n题目:{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}"
),
dict(role="BOT", prompt=f'答案是: {answer}'),
])
for answer in ["A", "B", "C", "D"]
},
ice_token="</E>",
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
)
mydataset_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
mydataset_datasets.append(
dict(
type=MyDataset,
path="./data/mydataset/",
name=_name,
abbr=f"mydataset-{_name}",
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
test_split='test'),
infer_cfg=mydataset_infer_cfg,
eval_cfg=mydataset_eval_cfg,
))
常见问题解决
1. 数据集加载失败
如果遇到"Partitioned into 0 tasks"错误,通常是因为配置文件中的数据集变量名不符合OpenCompass的命名规范。确保配置文件中导出的数据集变量名以"_datasets"结尾。
2. 评估结果未生成
检查以下几点:
- 配置文件是否正确引用了数据集类
- 数据文件路径是否正确
- 评估配置中的输入输出列名是否与数据文件匹配
- 确保运行命令中指定的数据集名称与配置文件名称一致
3. 日志文件缺失
如果未生成日志目录,通常意味着评估流程未能正确启动。检查运行命令和配置文件,确保所有参数设置正确。
最佳实践建议
- 遵循OpenCompass的命名规范,特别是配置文件和变量名的后缀要求
- 在添加新数据集前,先参考项目中的现有数据集实现
- 使用小规模数据集进行测试,验证流程正确后再进行完整评估
- 确保数据文件的格式与代码中的解析逻辑一致
- 对于多选题评估,注意prompt模板的设计要清晰明确
通过以上步骤和注意事项,开发者可以顺利地在OpenCompass项目中添加自定义评测数据集,为模型评估提供更全面的测试基准。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1