OpenCompass项目评测数据集添加指南
2025-06-08 17:24:33作者:侯霆垣
在OpenCompass项目中添加自定义评测数据集是模型评估的重要环节。本文将以一个实际案例为基础,详细介绍如何在OpenCompass项目中正确添加新的评测数据集。
数据集添加流程
1. 创建数据集类
首先需要创建一个继承自BaseDataset的自定义数据集类。这个类主要负责数据加载和预处理工作。以下是一个典型的多选题数据集实现示例:
import csv
import os.path as osp
from datasets import Dataset, DatasetDict
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class MyDataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
dataset = DatasetDict()
for split in ['dev', 'test']:
raw_data = []
filename = osp.join(path, split, f'{name}.csv')
with open(filename, encoding='utf-8') as f:
reader = csv.reader(f)
_ = next(reader) # 跳过标题行
for row in reader:
assert len(row) == 7
raw_data.append({
'question': row[1],
'A': row[2],
'B': row[3],
'C': row[4],
'D': row[5],
'answer': row[6],
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
2. 注册数据集类
在所在目录的__init__.py文件中添加导入语句,确保数据集类能够被正确注册:
from .mydataset import * # noqa: F401, F403
3. 准备数据文件
将数据集文件放置在项目的data目录下,按照dev和test子目录组织。每个CSV文件应包含题目、选项和答案等字段。
4. 创建配置文件
配置文件是OpenCompass评估流程的核心,需要定义评估的具体参数。以下是多选题评估的典型配置:
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MyDataset
mydataset_subject_mapping = {
'agronomy': '农学',
'anatomy': '解剖学'
}
mydataset_all_sets = list(mydataset_subject_mapping.keys())
mydataset_datasets = []
for _name in mydataset_all_sets:
_ch_name = mydataset_subject_mapping[_name]
mydataset_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={
answer: dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=f"以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。\n题目:{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}"
),
dict(role="BOT", prompt=f'答案是: {answer}'),
])
for answer in ["A", "B", "C", "D"]
},
ice_token="</E>",
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
)
mydataset_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
mydataset_datasets.append(
dict(
type=MyDataset,
path="./data/mydataset/",
name=_name,
abbr=f"mydataset-{_name}",
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
test_split='test'),
infer_cfg=mydataset_infer_cfg,
eval_cfg=mydataset_eval_cfg,
))
常见问题解决
1. 数据集加载失败
如果遇到"Partitioned into 0 tasks"错误,通常是因为配置文件中的数据集变量名不符合OpenCompass的命名规范。确保配置文件中导出的数据集变量名以"_datasets"结尾。
2. 评估结果未生成
检查以下几点:
- 配置文件是否正确引用了数据集类
- 数据文件路径是否正确
- 评估配置中的输入输出列名是否与数据文件匹配
- 确保运行命令中指定的数据集名称与配置文件名称一致
3. 日志文件缺失
如果未生成日志目录,通常意味着评估流程未能正确启动。检查运行命令和配置文件,确保所有参数设置正确。
最佳实践建议
- 遵循OpenCompass的命名规范,特别是配置文件和变量名的后缀要求
- 在添加新数据集前,先参考项目中的现有数据集实现
- 使用小规模数据集进行测试,验证流程正确后再进行完整评估
- 确保数据文件的格式与代码中的解析逻辑一致
- 对于多选题评估,注意prompt模板的设计要清晰明确
通过以上步骤和注意事项,开发者可以顺利地在OpenCompass项目中添加自定义评测数据集,为模型评估提供更全面的测试基准。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.55 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
170
12
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.85 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70