Ballerina项目中的GraalVM原生镜像线程转储问题解析
背景介绍
在Ballerina SwanLake Update 12(2201.12.2)版本中,开发人员发现了一个重要问题:当使用GraalVM将Ballerina代码编译为原生镜像时,无法生成Strand转储报告。这个问题在Update 10版本中是可以正常工作的。Strand转储对于诊断程序挂起问题至关重要,因此这个问题成为了使用GraalVM原生镜像时的一个严重障碍。
问题重现
开发人员提供了一个简单的HTTP服务示例代码:
import ballerina/http;
service / on new http:Listener(9090) {
    resource function get greeting() returns string {
        return "Hello, World!";
    }
}
构建原生镜像时启用了监控选项:
bal build --graalvm --graalvm-build-options="--enable-monitoring=all"
运行后尝试生成Strand转储时,系统返回错误信息:"Error occurred during strand dump generation",而不是预期的转储报告。
技术原因分析
这个问题的根本原因在于Ballerina运行时从Java 17升级到Java 21后,线程模型的重大变化:
- 
旧版实现:在Java 17环境下,Ballerina使用自定义的 Strand类及其状态来生成转储报告。
- 
新版变化:迁移到Java 21后,Ballerina开始使用虚拟线程(Virtual Threads)及其内部实现来获取线程相关信息,这依赖于 ThreadMXBean接口。
- 
GraalVM限制:目前GraalVM原生镜像不支持 ThreadMXBean接口,这个功能支持正在GraalVM项目中跟踪开发。
临时解决方案
虽然无法直接生成Strand转储,但开发人员可以使用JDK自带的jcmd工具获取线程转储:
jcmd <PID> Thread.dump_to_file -overwrite <输出文件路径>
需要注意的是:
- 系统需要安装完整JDK
- 建议使用GraalVM 24.0.1或更新版本,旧版本可能不支持Attach API
长期解决方案展望
要实现原生镜像下的完整Strand转储功能,Ballerina运行时需要进行以下改进:
- 跟踪虚拟线程的创建和释放
- 维护一个虚拟线程ID列表
- 开发专门的转储生成工具
这些改进可能会带来一定的性能开销,需要仔细评估和优化。
总结
这个问题展示了在将高级语言特性(如Ballerina的轻量级线程)与底层技术(如GraalVM原生镜像)结合时可能遇到的挑战。随着Java虚拟线程和GraalVM技术的持续发展,预计未来版本将提供更完善的解决方案。目前开发人员可以使用jcmd作为临时替代方案进行问题诊断。
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
 docs
docs kernel
kernel pytorch
pytorch ops-math
ops-math flutter_flutter
flutter_flutter ohos_react_native
ohos_react_native cangjie_compiler
cangjie_compiler RuoYi-Vue3
RuoYi-Vue3 cangjie_test
cangjie_test Cangjie-Examples
Cangjie-Examples