Mapperly 4.3.0-next.0版本发布:更强大的对象映射工具
Mapperly是一个基于Roslyn编译器的.NET对象映射代码生成工具,它能够在编译时生成高性能的映射代码,避免了传统反射映射带来的性能损耗。最新发布的4.3.0-next.0版本带来了一些令人兴奋的新特性和改进。
新特性解析
泛型类和嵌套映射器中支持不安全访问器
这个版本最大的亮点之一是增加了对泛型类和嵌套映射器中不安全访问器的支持。这意味着开发者现在可以在更复杂的泛型场景中使用Mapperly,而不会受到访问限制的困扰。对于使用高级泛型编程模式的开发者来说,这无疑是一个重大改进。
Roslyn 4.14支持
随着.NET生态系统的不断发展,Mapperly也紧跟步伐,新增了对Roslyn 4.14编译器的支持。这确保了Mapperly能够与最新的.NET开发工具链保持兼容,为开发者提供更稳定、更高效的开发体验。
按成员禁用空值不匹配诊断
在实际开发中,有时我们需要有意忽略某些成员的空值不匹配情况。新版本允许开发者通过配置针对单个成员禁用RMG089诊断警告,提供了更细粒度的控制能力。这个改进使得Mapperly在实际项目中的适应性更强。
重要修复
可查询投影中的可空用户实现值类型映射
这个版本修复了一个关于可查询投影中可空用户实现值类型映射的问题。在之前的版本中,这类映射可能会产生不正确的结果,现在这个问题得到了彻底解决,确保了映射结果的准确性。
技术深度分析
Mapperly作为编译时代码生成工具,其核心优势在于能够在编译阶段就确定映射逻辑,生成高度优化的代码。4.3.0-next.0版本的改进主要集中在三个方面:
-
泛型支持增强:通过支持泛型类和嵌套映射器中的不安全访问器,Mapperly现在能够处理更复杂的对象映射场景,这对于企业级应用开发尤为重要。
-
工具链兼容性:支持最新Roslyn编译器版本,确保Mapperly能够与最新的.NET开发工具无缝协作,保持技术栈的前沿性。
-
诊断灵活性:细粒度的诊断控制使得开发者可以根据实际需求调整映射行为,而不是被工具强制约束,这体现了Mapperly设计上的实用性考量。
这些改进共同使得Mapperly成为一个更强大、更灵活的对象映射解决方案,特别适合对性能有严格要求的企业级应用开发场景。
总结
Mapperly 4.3.0-next.0版本通过增强泛型支持、提升工具链兼容性和改进诊断灵活性,进一步巩固了其作为.NET高性能对象映射解决方案的地位。对于正在寻找反射映射替代方案的.NET开发者来说,这个版本值得关注和尝试。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









