Yolo Tracking项目中YOLOv10x在MOT17数据集上的性能分析
2025-05-30 22:55:01作者:裘旻烁
背景介绍
Yolo Tracking是一个基于YOLO系列目标检测算法的多目标跟踪框架,它整合了多种跟踪方法如BoT-SORT和ByteTrack等。在实际应用中,用户发现使用YOLOv10x作为检测器在MOT17数据集上表现不佳,特别是对于小目标场景。
性能问题分析
当使用默认配置运行Yolo Tracking的验证脚本时,YOLOv10x在MOT17数据集上的表现确实不尽如人意。具体指标如下:
- HOTA(高阶跟踪准确率):25.661
- MOTA(多目标跟踪准确率):18.76
- IDF1(身份F1分数):22.929
经过深入分析,我们发现这种低性能表现主要源于两个关键因素:
-
目标尺寸影响:YOLOv10x在MOT17-9序列(包含较大目标)上表现良好,但在MOT17-13序列(包含大量小目标)上表现较差。这表明YOLOv10x对小目标的检测能力存在不足。
-
训练数据差异:官方README中展示的优秀结果实际上是使用YOLOX-X模型生成的,该模型按照ByteTrack论文的方法在CrowdHuman数据集和MOT17训练集的一半数据上进行了专门训练。
解决方案
针对上述问题,我们推荐以下解决方案:
-
使用YOLOX-X替代YOLOv10x:
- 执行命令:
python tracking/val.py --benchmark MOT17 --yolo-model yolox_m.pth --tracking-method bytetrack --source tracking/val_utils/data/MOT17/train - YOLOX-X经过专门训练,更适合MOT17数据集
- 执行命令:
-
针对小目标的优化:
- 考虑使用更高分辨率的输入
- 调整anchor大小以适应小目标
- 增加对小目标的训练数据
-
模型选择建议:
- 对于大目标场景,YOLOv10x仍然是不错的选择
- 对于复杂场景特别是小目标密集场景,建议使用专门训练的YOLOX-X
技术实现细节
值得注意的是,在使用YOLOX模型时可能会遇到预处理模块导入错误的问题。这是因为YOLOX需要特定的预处理操作,而某些环境可能缺少相关依赖。解决这个问题需要确保:
- 正确安装所有依赖项
- 检查boxmot.utils.ops模块是否包含yolox_preprocess函数
- 确认使用的YOLOX模型权重文件完整且正确
结论
在目标跟踪项目中,检测器的选择对最终性能有着决定性影响。YOLOv10x虽然是最新的YOLO系列模型,但在特定数据集上可能不是最佳选择。开发者应当根据实际场景需求选择合适的检测器,必要时进行针对性训练以获得最佳性能。对于MOT17这样的标准多目标跟踪数据集,使用经过专门训练的YOLOX-X模型能够获得更好的跟踪效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178