Yolo Tracking项目中YOLOv10x在MOT17数据集上的性能分析
2025-05-30 22:55:01作者:裘旻烁
背景介绍
Yolo Tracking是一个基于YOLO系列目标检测算法的多目标跟踪框架,它整合了多种跟踪方法如BoT-SORT和ByteTrack等。在实际应用中,用户发现使用YOLOv10x作为检测器在MOT17数据集上表现不佳,特别是对于小目标场景。
性能问题分析
当使用默认配置运行Yolo Tracking的验证脚本时,YOLOv10x在MOT17数据集上的表现确实不尽如人意。具体指标如下:
- HOTA(高阶跟踪准确率):25.661
- MOTA(多目标跟踪准确率):18.76
- IDF1(身份F1分数):22.929
经过深入分析,我们发现这种低性能表现主要源于两个关键因素:
-
目标尺寸影响:YOLOv10x在MOT17-9序列(包含较大目标)上表现良好,但在MOT17-13序列(包含大量小目标)上表现较差。这表明YOLOv10x对小目标的检测能力存在不足。
-
训练数据差异:官方README中展示的优秀结果实际上是使用YOLOX-X模型生成的,该模型按照ByteTrack论文的方法在CrowdHuman数据集和MOT17训练集的一半数据上进行了专门训练。
解决方案
针对上述问题,我们推荐以下解决方案:
-
使用YOLOX-X替代YOLOv10x:
- 执行命令:
python tracking/val.py --benchmark MOT17 --yolo-model yolox_m.pth --tracking-method bytetrack --source tracking/val_utils/data/MOT17/train - YOLOX-X经过专门训练,更适合MOT17数据集
- 执行命令:
-
针对小目标的优化:
- 考虑使用更高分辨率的输入
- 调整anchor大小以适应小目标
- 增加对小目标的训练数据
-
模型选择建议:
- 对于大目标场景,YOLOv10x仍然是不错的选择
- 对于复杂场景特别是小目标密集场景,建议使用专门训练的YOLOX-X
技术实现细节
值得注意的是,在使用YOLOX模型时可能会遇到预处理模块导入错误的问题。这是因为YOLOX需要特定的预处理操作,而某些环境可能缺少相关依赖。解决这个问题需要确保:
- 正确安装所有依赖项
- 检查boxmot.utils.ops模块是否包含yolox_preprocess函数
- 确认使用的YOLOX模型权重文件完整且正确
结论
在目标跟踪项目中,检测器的选择对最终性能有着决定性影响。YOLOv10x虽然是最新的YOLO系列模型,但在特定数据集上可能不是最佳选择。开发者应当根据实际场景需求选择合适的检测器,必要时进行针对性训练以获得最佳性能。对于MOT17这样的标准多目标跟踪数据集,使用经过专门训练的YOLOX-X模型能够获得更好的跟踪效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705