Yolo Tracking项目中YOLOv10x在MOT17数据集上的性能分析
2025-05-30 21:52:01作者:裘旻烁
背景介绍
Yolo Tracking是一个基于YOLO系列目标检测算法的多目标跟踪框架,它整合了多种跟踪方法如BoT-SORT和ByteTrack等。在实际应用中,用户发现使用YOLOv10x作为检测器在MOT17数据集上表现不佳,特别是对于小目标场景。
性能问题分析
当使用默认配置运行Yolo Tracking的验证脚本时,YOLOv10x在MOT17数据集上的表现确实不尽如人意。具体指标如下:
- HOTA(高阶跟踪准确率):25.661
- MOTA(多目标跟踪准确率):18.76
- IDF1(身份F1分数):22.929
经过深入分析,我们发现这种低性能表现主要源于两个关键因素:
-
目标尺寸影响:YOLOv10x在MOT17-9序列(包含较大目标)上表现良好,但在MOT17-13序列(包含大量小目标)上表现较差。这表明YOLOv10x对小目标的检测能力存在不足。
-
训练数据差异:官方README中展示的优秀结果实际上是使用YOLOX-X模型生成的,该模型按照ByteTrack论文的方法在CrowdHuman数据集和MOT17训练集的一半数据上进行了专门训练。
解决方案
针对上述问题,我们推荐以下解决方案:
-
使用YOLOX-X替代YOLOv10x:
- 执行命令:
python tracking/val.py --benchmark MOT17 --yolo-model yolox_m.pth --tracking-method bytetrack --source tracking/val_utils/data/MOT17/train - YOLOX-X经过专门训练,更适合MOT17数据集
- 执行命令:
-
针对小目标的优化:
- 考虑使用更高分辨率的输入
- 调整anchor大小以适应小目标
- 增加对小目标的训练数据
-
模型选择建议:
- 对于大目标场景,YOLOv10x仍然是不错的选择
- 对于复杂场景特别是小目标密集场景,建议使用专门训练的YOLOX-X
技术实现细节
值得注意的是,在使用YOLOX模型时可能会遇到预处理模块导入错误的问题。这是因为YOLOX需要特定的预处理操作,而某些环境可能缺少相关依赖。解决这个问题需要确保:
- 正确安装所有依赖项
- 检查boxmot.utils.ops模块是否包含yolox_preprocess函数
- 确认使用的YOLOX模型权重文件完整且正确
结论
在目标跟踪项目中,检测器的选择对最终性能有着决定性影响。YOLOv10x虽然是最新的YOLO系列模型,但在特定数据集上可能不是最佳选择。开发者应当根据实际场景需求选择合适的检测器,必要时进行针对性训练以获得最佳性能。对于MOT17这样的标准多目标跟踪数据集,使用经过专门训练的YOLOX-X模型能够获得更好的跟踪效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137