SUMO项目中A*算法与ALT启发式优化效果分析
2025-06-28 09:24:27作者:凤尚柏Louis
概述
在交通仿真系统SUMO中,路径规划算法对仿真性能有着重要影响。A算法作为一种常用的启发式搜索算法,其性能很大程度上取决于所采用的启发函数。SUMO提供了ALT(Arc Flags with Landmarks)启发式方法来优化A算法的性能,但实际应用中可能出现性能不升反降的情况。
ALT启发式方法原理
ALT方法通过在路网中选择一组关键节点(landmarks),预先计算这些关键节点到路网中所有其他节点的最短距离。在进行A*搜索时,利用三角不等式原理,从这些预计算的距离中推导出更精确的启发式估计值,从而减少需要探索的节点数量。
性能优化关键因素
-
Landmarks数量选择:测试表明,8-16个landmarks通常能取得最佳效果。过多的landmarks不仅不会带来额外收益,反而会增加预计算的开销。
-
随机因子影响:当使用
weights.random-factor参数时,会破坏预计算距离表的有效性。因为随机因子会动态改变边权重,使得预计算的最短距离不再准确,导致ALT方法失效。 -
优先级因子影响:类似地,
weights.priority-factor参数也会影响预计算距离表的准确性,使得ALT方法无法发挥预期效果。
实际测试数据
对比测试显示:
- 无距离表时:平均探索2774.94条边,耗时7.94秒
- 8个landmarks时:平均探索1361.78条边,耗时4.46秒
- 16个landmarks时:平均探索1062.16条边,耗时4.13秒
- 50个landmarks时:平均探索704.39条边,但耗时增加到4.75秒
当引入随机因子1.8时,16个landmarks的性能下降到平均探索2075.03条边,耗时9.11秒,接近无距离表的性能。
最佳实践建议
- 推荐使用8-16个landmarks进行优化
- 避免在使用ALT方法时同时使用
weights.random-factor或weights.priority-factor参数 - 对于大型路网,使用
generateLandmarks.py脚本生成landmarks时,可添加-d -p 10 --vclass passenger参数优化选择过程 - 在实际应用中,应根据具体路网特征进行参数调优,找到最适合的landmarks数量
通过合理配置ALT方法,可以在SUMO仿真中获得显著的性能提升,但需要注意避免与某些功能参数的冲突。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248