Spark-FM-parallelSGD 开源项目最佳实践
2025-05-22 14:13:59作者:史锋燃Gardner
1. 项目介绍
Spark-FM-parallelSGD 是一个在 Apache Spark 上实现的因子分解机(Factorization Machines, FM)并行随机梯度下降(Stochastic Gradient Descent, SGD)的开源项目。该项目由 blebreton 创建,用于在大规模数据集上高效地训练因子分解机模型。因子分解机是一种能够捕捉数据集中单一和成对交互的智能通用预测器,特别适用于高稀疏数据。
2. 项目快速启动
以下是在本地环境中快速启动并运行 Spark-FM-parallelSGD 项目的步骤:
首先,确保你已经安装了 Apache Spark,并且设置了相应的环境变量。
# 启动 Spark
bin/spark-shell --master local
对于 Python 用户,你需要将项目文件添加到 PySpark 会话中:
# 在 PySpark 中添加项目文件
sc.addPyFile("path/to/spark-FM-parallelSGD/fm/fm_parallel_sgd.py")
import fm_parallel_sgd as fm
对于 Scala 用户,你需要加载 Scala 文件:
:load path/to/spark-FM-parallelSGD/fm/fm_parallel_sgd.scala
接下来,准备你的数据集,确保它被分割成训练集和测试集,并且数据格式为 RDD[LabeledPoint]。
# 示例数据预处理
data = sc.textFile("path/to/your/dataset")
# 转换数据格式,此处需要根据实际数据格式进行调整
labeled_data = data.map(lambda x: LabeledPoint(label, features))
train, test = labeled_data.randomSplit([0.8, 0.2])
现在,你可以开始训练 FM 模型:
# 训练 FM 模型
params = {
'iterations': 50,
'iter_sgd': 5,
'alpha': 0.01,
'regParam': 0.01,
'factorLength': 4,
'verbose': True
}
weights = fm.trainFM_parallel_sgd(sc, train, **params)
3. 应用案例和最佳实践
数据预处理
在开始训练之前,对数据进行预处理非常重要。这包括处理缺失值、归一化特征、编码类别特征等。
模型调优
使用交叉验证和网格搜索来调整模型的超参数,例如学习率、正则化参数和因子长度。
# 调整超参数的示例代码
alpha_list = [0.001, 0.01, 0.1]
for alpha in alpha_list:
params['alpha'] = alpha
weights = fm.trainFM_parallel_sgd(sc, train, **params)
evaluation = fm.evaluate(test, weights)
print(f"Alpha: {alpha}, AUC: {evaluation['auc']}")
模型评估
在测试集上评估模型性能,确保模型具有良好的泛化能力。
# 模型评估
evaluation = fm.evaluate(test, weights)
print(evaluation)
模型存储与加载
保存训练好的模型,以便将来进行推断或进一步分析。
# 保存模型
fm.saveModel(weights, "path/to/store/model")
# 加载模型
loaded_weights = fm.loadModel("path/to/store/model")
4. 典型生态项目
Spark-FM-parallelSGD 可以与 Spark 生态系统中其他项目配合使用,例如:
- 使用 Spark MLlib 中的数据预处理工具。
- 将训练好的模型部署到 Spark Streaming 应用程序中进行实时推断。
- 利用 Spark SQL 对模型进行数据分析。
通过上述步骤,你可以快速上手 Spark-FM-parallelSGD 项目,并在实际应用中遵循最佳实践来提高模型性能。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133