探索医疗图像识别的新里程碑:RadImageNet
2024-05-21 03:11:58作者:郁楠烈Hubert
项目介绍
欢迎来到RadImageNet的世界——一个开放访问的医学影像数据库。这个创新的项目旨在提升深度学习在下游医学成像应用中的迁移学习性能。RadImageNet不仅提供了大量的CT、MRI和超声波图像,还预训练了几个模型,为医疗图像处理的研究人员提供了一个强大的起点。
该数据库包含135万张标注过的图像,涵盖了肌肉骨骼、神经系统、肿瘤、消化系统、内分泌系统和呼吸系统等多个领域的病理学。其多样化的数据集包括三种成像方式,涉及11个解剖部位和165种病理标签。
项目技术分析
RadImageNet采用了包括InceptionResNetV2、ResNet50、DenseNet121和InceptionV3在内的多个深度学习模型进行预训练。这些经过RadImageNet数据集训练的模型,在Top1和Top5准确率上有出色的表现(如表格所示)。它们可以作为进一步研究的基础,应用于各种医学图像分析任务。
| 模型名称 | Top1 准确率 | Top5 准确率 |
| ------------- |:---------:| -----:|
| InceptionResNetV2 | 74.0% | 94.3% |
| ResNet50 | 72.3% | 94.1% |
| DenseNet121 | 73.1% | 96.1% |
| InceptionV3 | 73.2% | 92.7% |
应用场景
RadImageNet模型已经在多个实际的医疗成像应用中进行了验证,包括甲状腺结节恶性预测、乳腺病变分类、膝关节损伤检测、肺部疾病识别、呼吸系统相关病灶检测以及脑内出血检测等。针对这些应用,项目团队模拟了多种微调设置,并比较了与ImageNet预训练模型的性能差异。

项目特点
- 大规模数据集:超过135万个标注的医学图像,覆盖了多种疾病和解剖结构。
- 高精度模型:预先训练的模型在多种应用上展现出优秀的性能,特别是对于小样本数据集的情况。
- 广泛的应用范围:适用于甲状腺超声、乳腺超声、MRI诊断等多种医疗场景。
- 易用性:提供TensorFlow和PyTorch版本的预训练模型,代码示例帮助快速集成到自己的项目中。
引用该项目时,请记得使用以下参考文献:
@article{doi:10.1148/ryai.210315,
author = {...},
title = {RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning},
journal = {Radiology: Artificial Intelligence},
volume = {0},
number = {ja},
pages = {e210315},
year = {0},
doi = {10.1148/ryai.210315},
URL = {https://doi.org/10.1148/ryai.210315},
eprint = {https://doi.org/10.1148/ryai.210315}
}
RadImageNet是一个强大的工具,将推动医疗图像识别的边界,为研究人员和开发者提供无价的数据资源和预训练模型。现在就加入这个社区,开启你的医疗成像智能分析之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248