Sentry-Python项目中AI监控在异步生成器场景下的正确使用方法
2025-07-05 16:58:11作者:卓炯娓
在Python的异步编程场景中,特别是在使用FastAPI框架处理流式响应(SSE)时,开发者经常会遇到AI监控功能无法正常工作的问题。本文将以Sentry-Python项目为例,深入分析这一问题的技术背景和解决方案。
问题背景
当开发者使用FastAPI构建服务,并通过异步生成器处理LLM(大语言模型)的流式响应时,往往需要监控API调用的token消耗情况。常见的错误做法是直接使用ai.chat_completions.create.xxx这样的操作名称(op)创建span,这会导致监控数据无法正确显示在Sentry的LLM监控面板中。
技术分析
问题的核心在于span的创建方式和属性设置不符合Sentry的规范要求。Sentry对AI监控的span有特定的数据格式要求:
- 操作名称(op)必须使用预定义的平台标识,如
openai、cohere、langchain或huggingface_hub,而不能使用自定义的xxx - 必须正确设置
pipeline_name变量,这是Sentry用来关联span的关键字段 - 如果需要显示费用信息,必须设置
ai.model_id属性
正确实现方案
以下是经过验证的正确实现方式:
async def stream():
with sentry_sdk.start_span(
op="ai.chat_completions.create.openai", # 使用预定义平台标识
name="your-pipeline-name",
data={
"ai.model_id": "gpt-4", # 设置模型ID以支持费用计算
"pipeline_name": "your-pipeline-name" # 关键关联字段
}
) as span:
token = 0
for i in range(10):
token += 1
yield f"{i}"
# 记录token使用情况
span.set_data("ai.total_tokens", token)
最佳实践建议
- 命名规范:严格遵循Sentry定义的op命名规范,不要使用自定义后缀
- 数据完整性:确保设置所有必要的属性字段,特别是模型ID和pipeline名称
- 异步上下文:在异步生成器中正确维护span的生命周期,确保其在所有yield操作期间保持活跃
- 监控验证:发布后及时检查Sentry性能面板,确认span数据格式正确
总结
通过遵循Sentry的span数据规范,开发者可以成功在异步生成器场景中实现AI调用监控。这一方案不仅适用于流式响应场景,也可以推广到其他异步编程模式中。正确配置的监控能够提供准确的token消耗和费用数据,为服务优化提供有力支持。
对于更复杂的场景,建议参考Sentry官方文档中关于LLM监控的详细规范,确保所有监控指标都能正确采集和展示。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869