Ivy项目中的torch.linalg.norm函数测试失败问题分析
2025-05-15 09:26:11作者:舒璇辛Bertina
在Ivy项目的测试过程中,发现torch前端linalg模块的norm函数测试用例存在多个失败情况。这个问题涉及到不同深度学习框架对矩阵范数计算时轴参数处理的差异性。
问题背景
矩阵范数计算是线性代数中的基础操作,torch.linalg.norm函数用于计算张量的各种范数。测试用例期望该函数能够处理最多5个维度的轴参数,但实际运行中发现多个后端框架对此有严格限制。
错误现象分析
测试失败主要出现在以下四种后端框架上:
- JAX后端:报错信息显示"Invalid axis values ((0, 1, 2))",表明JAX的jnp.linalg.norm不接受3个轴的输入
- TensorFlow后端:错误提示"'axis' must be None, an integer, or a tuple of 2 unique integers",明确要求轴参数只能是None、单个整数或包含2个唯一整数的元组
- PyTorch后端:错误信息"dim must be a 2-tuple",同样限制轴参数必须是2元组
- PaddlePaddle后端:运行时错误"dim must be of length 1 or 2",与前述框架类似
技术差异分析
各框架对linalg.norm函数的轴参数处理存在明显差异:
- 参数限制:大多数框架(如TensorFlow、PyTorch、Paddle)仅支持1或2个轴的范数计算,而测试用例尝试了3个轴的情况
- 矩阵范数与向量范数:当指定2个轴时,框架通常计算的是矩阵范数;指定1个轴时计算的是向量范数
- 高维处理:测试用例期望处理更高维度(如3维及以上)的张量范数计算,但多数框架未实现此功能
解决方案建议
针对这一问题,可以考虑以下解决方案:
- 修改测试用例:将测试限制在框架普遍支持的轴参数范围内(1或2个轴)
- 实现兼容层:在Ivy的抽象层中,对高维张量范数计算进行分解处理
- 文档明确限制:在项目文档中明确指出各后端对轴参数的限制
总结
这个问题揭示了深度学习框架在高级线性代数操作实现上的差异性。作为跨框架抽象层,Ivy需要妥善处理这些差异,要么通过兼容实现统一行为,要么明确限制功能范围。对于矩阵范数计算这种情况,更合理的做法可能是遵循大多数框架的限制,仅支持1或2个轴的参数,以确保跨框架兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76