Ivy项目中的torch.linalg.norm函数测试失败问题分析
2025-05-15 10:06:57作者:舒璇辛Bertina
在Ivy项目的测试过程中,发现torch前端linalg模块的norm函数测试用例存在多个失败情况。这个问题涉及到不同深度学习框架对矩阵范数计算时轴参数处理的差异性。
问题背景
矩阵范数计算是线性代数中的基础操作,torch.linalg.norm函数用于计算张量的各种范数。测试用例期望该函数能够处理最多5个维度的轴参数,但实际运行中发现多个后端框架对此有严格限制。
错误现象分析
测试失败主要出现在以下四种后端框架上:
- JAX后端:报错信息显示"Invalid axis values ((0, 1, 2))",表明JAX的jnp.linalg.norm不接受3个轴的输入
- TensorFlow后端:错误提示"'axis' must be None, an integer, or a tuple of 2 unique integers",明确要求轴参数只能是None、单个整数或包含2个唯一整数的元组
- PyTorch后端:错误信息"dim must be a 2-tuple",同样限制轴参数必须是2元组
- PaddlePaddle后端:运行时错误"dim must be of length 1 or 2",与前述框架类似
技术差异分析
各框架对linalg.norm函数的轴参数处理存在明显差异:
- 参数限制:大多数框架(如TensorFlow、PyTorch、Paddle)仅支持1或2个轴的范数计算,而测试用例尝试了3个轴的情况
- 矩阵范数与向量范数:当指定2个轴时,框架通常计算的是矩阵范数;指定1个轴时计算的是向量范数
- 高维处理:测试用例期望处理更高维度(如3维及以上)的张量范数计算,但多数框架未实现此功能
解决方案建议
针对这一问题,可以考虑以下解决方案:
- 修改测试用例:将测试限制在框架普遍支持的轴参数范围内(1或2个轴)
- 实现兼容层:在Ivy的抽象层中,对高维张量范数计算进行分解处理
- 文档明确限制:在项目文档中明确指出各后端对轴参数的限制
总结
这个问题揭示了深度学习框架在高级线性代数操作实现上的差异性。作为跨框架抽象层,Ivy需要妥善处理这些差异,要么通过兼容实现统一行为,要么明确限制功能范围。对于矩阵范数计算这种情况,更合理的做法可能是遵循大多数框架的限制,仅支持1或2个轴的参数,以确保跨框架兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136