Reactor Core中自定义Subscriber导致Flux.collectList阻塞问题分析
问题现象描述
在使用Reactor Core框架时,开发者尝试实现自定义的org.reactivestreams.Processor接口,并在独立线程中生产数据。当调用Flux.collectList().block()方法时,程序会出现阻塞现象,无法正常返回结果。而使用Flux.subscribe()或Flux.toIterable()方法则能正常工作。
问题重现示例
开发者提供了两种重现方式:
-
第一种方式通过自定义Processor实现,在独立线程中推送数据,然后尝试阻塞式获取结果列表,最终抛出
IllegalStateException超时异常。 -
第二种方式展示了更简洁的代码示例:
class AdapterProcessor implements Processor<String, String> {
// 实现Processor接口方法
// ...
}
class CustomRunnable implements Runnable {
private final Subscriber<String> subscriber;
// 在run方法中直接调用subscriber的onNext和onComplete
// ...
}
@Test
void reproCase() {
var function = new AdapterProcessor();
var runnable = new CustomRunnable(function);
var thread = new Thread(runnable);
Flux.from(function)
.map(Integer::parseInt)
.map(Integer::longValue)
.doFirst(thread::start)
.collectList()
.block(Duration.of(10, ChronoUnit.SECONDS));
}
问题根本原因
经过分析,这个问题源于对Reactive Streams规范的违反,具体表现在:
-
违反订阅顺序:示例代码在订阅过程完成前就开始推送数据,违反了Reactive Streams规范中的规则1.9。
-
忽略背压机制:自定义实现没有正确处理请求信号(request signal),直接推送数据而不考虑下游的处理能力。
-
线程安全问题:在多线程环境下没有正确处理订阅和事件发布的同步问题。
解决方案
开发者发现使用Reactor Core提供的FluxSink可以解决这个问题。正确的做法应该是:
-
使用Reactor提供的抽象:将实现改为同时实现
Subscriber和Consumer<FluxSink>接口。 -
使用Flux.create工厂方法:通过Reactor提供的创建方式构建Flux,而不是直接实现底层接口。
-
遵循响应式编程规范:确保在订阅完成后再开始数据推送,并正确处理背压信号。
最佳实践建议
-
优先使用Reactor提供的高级API:如
Flux.create、Flux.generate等,而不是直接实现底层接口。 -
理解响应式流规范:在自定义实现前,确保充分理解Reactive Streams规范的所有规则。
-
正确处理多线程场景:在涉及多线程的场景下,特别注意订阅和数据推送的顺序和同步问题。
-
利用现有工具:Reactor Core提供了丰富的操作符和工具类,大多数情况下不需要自定义底层实现。
总结
这个问题展示了在响应式编程中直接实现底层接口可能带来的复杂性。Reactor Core框架提供了更高层次的抽象来简化开发,开发者应该优先使用这些抽象,而不是直接操作底层接口。理解并遵循Reactive Streams规范对于构建正确的响应式应用至关重要。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00