推荐文章:Hybrid semi-Markov CRF —— 深度学习序列标注的新型框架
2024-05-21 09:53:14作者:乔或婵
在自然语言处理领域,序列标注是关键任务之一,如命名实体识别(NER)。今天,我们向您推荐一个极具潜力的开源项目——Hybrid semi-Markov CRF(HSCRF),它在CoNLL 2003 NER数据集上的F1分数达到了惊人的91.38%±0.10%,且不依赖任何额外的语料库或资源。
项目介绍
HSCRF是一个基于PyTorch深度学习框架的序列标注模型,它融合了半马尔科夫模型与条件随机场(CRF)的优势,旨在提高模型对序列结构的理解和预测精度。该项目不仅提供了易于使用的代码实现,还支持预训练词嵌入,确保了模型的灵活性和可扩展性。
项目技术分析
HSCRF的核心在于其独特的架构设计,结合了LSTM(长短时记忆网络)和字符级别的LSTM,以捕捉更丰富的词汇特征。通过引入高速公路网络(Highway Networks),模型能够更有效地学习和传播信息。此外,该模型采用了半马尔科夫条件随机场,允许状态跨越多个时间步长,这在处理非均匀间隔的数据时特别有用。
应用场景
HSCRF适用于各种序列标注任务,包括但不限于:
- 命名实体识别(NER)
- 依存句法分析
- 词性标注
- 关键词抽取
- 情感分析
不论是在学术研究还是实际应用中,这个强大的工具都能帮助提升您的模型性能和效率。
项目特点
- 高性能:在CoNLL 2003 NER数据集上达到91.38%以上的F1分数。
- 简单易用:基于Python 2.7和PyTorch 0.2.0,依赖项清晰明了,只需一行命令即可开始训练。
- 预训练词嵌入:支持Glove预训练词嵌入,加速模型训练过程,提高效果。
- 灵活性:可以自由调整参数,适应不同的任务需求。
- 创新性:融合半马尔科夫模型与CRF,改进传统序列标注方法。
如果您正在寻找一种高效的序列标注解决方案或者对自然语言处理有深入研究的兴趣,那么Hybrid semi-Markov CRF无疑是您的理想选择。立即试用,体验其卓越性能吧!
引用:
@InProceedings{HSCRF,
author = "Ye, Zhixiu
and Ling, Zhen-Hua",
title = "Hybrid semi-Markov CRF for Neural Sequence Labeling",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "235--240",
location = "Melbourne, Australia",
url = "http://aclweb.org/anthology/P18-2038"
}
立即加入HSCRF的社区,开启您的深度学习序列标注之旅!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869