Spring Security 中请求匹配器的现代化演进之路
在 Spring Security 项目中,开发团队正在为即将到来的 Spring Framework 7.0 版本做准备,其中一个重要变化是逐步淘汰传统的请求路径匹配方式。本文将深入分析这一技术演进背后的原因、具体实现方案以及对开发者带来的影响。
技术背景与演进动机
Spring Security 长期以来依赖两种核心请求匹配器:
- 基于 Ant 风格的
AntPathRequestMatcher - 基于 MVC 的
MvcRequestMatcher
这两种实现分别依赖于 Spring Framework 中的 PathMatcher 和 HandlerMappingIntrospector 接口。随着 Spring Framework 7.0 M1 版本的发布,这两个接口已被标记为废弃状态,预示着未来版本中将移除对它们的支持。
新方案的技术实现
为应对这一变化,Spring Security 团队设计了全新的 PathPatternRequestMatcher 作为替代方案。这种新匹配器基于 Spring Framework 5.3 引入的 PathPattern 解析器,相比传统方案具有以下优势:
- 性能提升:
PathPattern采用预解析模式,避免了传统正则表达式匹配的性能开销 - 功能增强:支持更丰富的路径匹配语法,如
{*path}通配符 - 一致性:与 Spring WebFlux 保持一致的路径匹配行为
具体迁移工作
在实际迁移过程中,团队重点关注了三个核心组件的改造:
- CasAuthenticationFilter:处理 CAS 认证流程的过滤器
- SwitchUserFilter:实现用户切换功能的过滤器
- OAuth2LoginBeanDefinitionParser:OAuth2 登录的 Bean 定义解析器
这些组件原先都使用 AntPathRequestMatcher 进行请求路径匹配,迁移后统一使用新的 PathPatternRequestMatcher 实现。
开发者影响与建议
对于使用 Spring Security 的开发者,这一变化主要带来以下影响:
- 兼容性:现有代码无需立即修改,但建议逐步迁移到新 API
- 配置方式:新的匹配器提供了更简洁的构造方式
- 性能优化:采用新匹配器的应用将自动获得路径匹配的性能提升
在迁移过程中,开发者应当注意:
- 新匹配器的路径语法与 Ant 风格略有不同
- 某些边缘情况的匹配行为可能发生变化
- 测试用例需要验证路径匹配逻辑是否保持预期行为
未来展望
这一技术演进不仅解决了 API 废弃问题,还为 Spring Security 带来了更现代化的基础设施。随着 PathPattern 的全面采用,Spring 生态系统中 Web 层的路径处理将实现更高程度的统一,为后续功能开发奠定坚实基础。
开发团队表示,这一变化将为简化基于路径的请求匹配器构造提供有力支持,未来可能会引入更多便捷的 API 来进一步优化开发体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00