MiniGemini项目中的ConvNext与Siglip模型训练优化实践
2025-06-25 03:49:26作者:温玫谨Lighthearted
引言
在视觉语言模型的研究中,MiniGemini项目采用了创新的架构设计,将ConvNext与CLIP等视觉编码器结合使用。本文针对项目实践中的两个关键技术点进行深入探讨:ConvNext的Drop Path机制优化以及Siglip模型替换CLIP时遇到的数值稳定性问题。
ConvNext的Drop Path机制优化
在原始MiniGemini实现中,ConvNext模型保留了0.1的Drop Path率,虽然训练时设置为不训练状态,但该路径仍会执行。经过项目团队的验证测试,完全移除Drop Path机制后,模型性能获得了显著提升:
- TextVQA任务:从65.2提升至65.9
- MME任务:从1523/316提升至1540/332
- MM-Vet任务:从40.8提升至42.1
这一改进表明,在视觉语言模型联合训练的场景下,取消Drop Path机制有助于模型性能的提升。项目团队已更新代码支持无Drop Path的训练配置。
Siglip模型替换的技术挑战
在尝试将CLIP替换为性能更优的Siglip模型时,开发者遇到了数值不稳定的问题:
-
特征维度对齐问题:Siglip模型输入为384×384分辨率,输出特征图尺度为27×27。为保持空间对齐,需要将ConvNext输入分辨率调整为864×864,这对计算资源提出了更高要求。
-
数值稳定性问题:在第一次前向传播后,注意力计算会出现NaN值,即使全部转换为FP32精度也无法解决。具体表现为:
- 初始特征计算正常
- 注意力权重计算(embed_att)出现NaN
- 后续迭代中特征值逐渐变为NaN
-
预处理差异:Siglip与CLIP在图像预处理时的均值和标准差存在显著差异,虽然理论上特征分布一致性更重要,但这种差异可能影响模型训练的稳定性。
解决方案建议
针对上述问题,建议采取以下措施:
- 渐进式训练策略:先使用较低分辨率预训练,再逐步提高分辨率
- 数值稳定性检查:
- 实现梯度裁剪
- 添加数值稳定性约束
- 监控中间特征统计量
- 特征归一化处理:考虑在跨模型特征融合前进行归一化处理
- 混合精度训练优化:仔细调整FP16/FP32混合精度训练策略
结论
MiniGemini项目在视觉编码器选择和优化方面提供了宝贵的实践经验。ConvNext的Drop Path机制优化展示了特定场景下的参数调整价值,而Siglip模型替换的挑战则揭示了跨模型特征融合的复杂性。这些经验对视觉语言模型的架构设计和训练优化具有重要参考意义。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493