MiniGemini项目中的ConvNext与Siglip模型训练优化实践
2025-06-25 07:52:23作者:温玫谨Lighthearted
引言
在视觉语言模型的研究中,MiniGemini项目采用了创新的架构设计,将ConvNext与CLIP等视觉编码器结合使用。本文针对项目实践中的两个关键技术点进行深入探讨:ConvNext的Drop Path机制优化以及Siglip模型替换CLIP时遇到的数值稳定性问题。
ConvNext的Drop Path机制优化
在原始MiniGemini实现中,ConvNext模型保留了0.1的Drop Path率,虽然训练时设置为不训练状态,但该路径仍会执行。经过项目团队的验证测试,完全移除Drop Path机制后,模型性能获得了显著提升:
- TextVQA任务:从65.2提升至65.9
- MME任务:从1523/316提升至1540/332
- MM-Vet任务:从40.8提升至42.1
这一改进表明,在视觉语言模型联合训练的场景下,取消Drop Path机制有助于模型性能的提升。项目团队已更新代码支持无Drop Path的训练配置。
Siglip模型替换的技术挑战
在尝试将CLIP替换为性能更优的Siglip模型时,开发者遇到了数值不稳定的问题:
-
特征维度对齐问题:Siglip模型输入为384×384分辨率,输出特征图尺度为27×27。为保持空间对齐,需要将ConvNext输入分辨率调整为864×864,这对计算资源提出了更高要求。
-
数值稳定性问题:在第一次前向传播后,注意力计算会出现NaN值,即使全部转换为FP32精度也无法解决。具体表现为:
- 初始特征计算正常
- 注意力权重计算(embed_att)出现NaN
- 后续迭代中特征值逐渐变为NaN
-
预处理差异:Siglip与CLIP在图像预处理时的均值和标准差存在显著差异,虽然理论上特征分布一致性更重要,但这种差异可能影响模型训练的稳定性。
解决方案建议
针对上述问题,建议采取以下措施:
- 渐进式训练策略:先使用较低分辨率预训练,再逐步提高分辨率
- 数值稳定性检查:
- 实现梯度裁剪
- 添加数值稳定性约束
- 监控中间特征统计量
- 特征归一化处理:考虑在跨模型特征融合前进行归一化处理
- 混合精度训练优化:仔细调整FP16/FP32混合精度训练策略
结论
MiniGemini项目在视觉编码器选择和优化方面提供了宝贵的实践经验。ConvNext的Drop Path机制优化展示了特定场景下的参数调整价值,而Siglip模型替换的挑战则揭示了跨模型特征融合的复杂性。这些经验对视觉语言模型的架构设计和训练优化具有重要参考意义。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
294
2.62 K
暂无简介
Dart
585
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.29 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
760
72
Ascend Extension for PyTorch
Python
124
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
424
仓颉编程语言运行时与标准库。
Cangjie
130
437