MiniGemini项目中的ConvNext与Siglip模型训练优化实践
2025-06-25 13:08:53作者:温玫谨Lighthearted
引言
在视觉语言模型的研究中,MiniGemini项目采用了创新的架构设计,将ConvNext与CLIP等视觉编码器结合使用。本文针对项目实践中的两个关键技术点进行深入探讨:ConvNext的Drop Path机制优化以及Siglip模型替换CLIP时遇到的数值稳定性问题。
ConvNext的Drop Path机制优化
在原始MiniGemini实现中,ConvNext模型保留了0.1的Drop Path率,虽然训练时设置为不训练状态,但该路径仍会执行。经过项目团队的验证测试,完全移除Drop Path机制后,模型性能获得了显著提升:
- TextVQA任务:从65.2提升至65.9
- MME任务:从1523/316提升至1540/332
- MM-Vet任务:从40.8提升至42.1
这一改进表明,在视觉语言模型联合训练的场景下,取消Drop Path机制有助于模型性能的提升。项目团队已更新代码支持无Drop Path的训练配置。
Siglip模型替换的技术挑战
在尝试将CLIP替换为性能更优的Siglip模型时,开发者遇到了数值不稳定的问题:
-
特征维度对齐问题:Siglip模型输入为384×384分辨率,输出特征图尺度为27×27。为保持空间对齐,需要将ConvNext输入分辨率调整为864×864,这对计算资源提出了更高要求。
-
数值稳定性问题:在第一次前向传播后,注意力计算会出现NaN值,即使全部转换为FP32精度也无法解决。具体表现为:
- 初始特征计算正常
- 注意力权重计算(embed_att)出现NaN
- 后续迭代中特征值逐渐变为NaN
-
预处理差异:Siglip与CLIP在图像预处理时的均值和标准差存在显著差异,虽然理论上特征分布一致性更重要,但这种差异可能影响模型训练的稳定性。
解决方案建议
针对上述问题,建议采取以下措施:
- 渐进式训练策略:先使用较低分辨率预训练,再逐步提高分辨率
- 数值稳定性检查:
- 实现梯度裁剪
- 添加数值稳定性约束
- 监控中间特征统计量
- 特征归一化处理:考虑在跨模型特征融合前进行归一化处理
- 混合精度训练优化:仔细调整FP16/FP32混合精度训练策略
结论
MiniGemini项目在视觉编码器选择和优化方面提供了宝贵的实践经验。ConvNext的Drop Path机制优化展示了特定场景下的参数调整价值,而Siglip模型替换的挑战则揭示了跨模型特征融合的复杂性。这些经验对视觉语言模型的架构设计和训练优化具有重要参考意义。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178