allRank 开源项目使用教程
2026-01-19 11:27:56作者:江焘钦
项目介绍
allRank 是一个基于 PyTorch 的框架,专门用于训练学习排序(Learning-to-Rank, LTR)神经网络模型。该项目提供了常见的点对点、成对和列表损失函数的实现,以及全连接和类似Transformer的评分函数。此外,allRank 还支持常用的评估指标,使得用户可以轻松地训练和评估自己的排序模型。
项目快速启动
环境准备
首先,确保你已经安装了 Python 和 PyTorch。然后,通过以下命令安装 allRank:
pip install allrank
训练模型
以下是一个简单的示例代码,展示如何使用 allRank 训练一个基本的排序模型:
import torch
from allrank.models.losses import DEFAULT_LOSS_FUNCTIONS
from allrank.models.metrics import DEFAULT_METRICS
from allrank.data.dataset import create_data_loader
from allrank.models.model import LTRModel
# 定义数据集路径
train_path = "path/to/train/dataset"
valid_path = "path/to/validation/dataset"
# 创建数据加载器
train_loader = create_data_loader(train_path)
valid_loader = create_data_loader(valid_path)
# 定义模型
model = LTRModel(input_dim=136, hidden_dims=[64, 32])
# 定义损失函数和优化器
loss_fn = DEFAULT_LOSS_FUNCTIONS["pairwise"]
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
model.train()
for batch in train_loader:
optimizer.zero_grad()
outputs = model(batch)
loss = loss_fn(outputs, batch["labels"])
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
for batch in valid_loader:
outputs = model(batch)
metrics = DEFAULT_METRICS(outputs, batch["labels"])
print(f"Epoch {epoch}, Metrics: {metrics}")
应用案例和最佳实践
应用案例
allRank 可以应用于多种场景,包括搜索引擎结果排序、推荐系统、广告排序等。例如,在搜索引擎中,可以使用 allRank 训练一个模型来优化搜索结果的排序,从而提高用户的搜索体验。
最佳实践
- 数据预处理:确保输入数据的质量和一致性,这对于模型的性能至关重要。
- 超参数调优:使用网格搜索或随机搜索来找到最佳的超参数组合。
- 模型评估:定期使用验证集评估模型性能,并根据评估结果调整模型结构或训练策略。
典型生态项目
相关项目
- PyTorch:allRank 基于 PyTorch 构建,因此对 PyTorch 的熟悉可以帮助你更好地理解和使用 allRank。
- TensorFlow Ranking:另一个流行的学习排序框架,如果你对 TensorFlow 更熟悉,可以考虑使用它。
- LightGBM:一个高效的梯度提升框架,常用于排序任务,可以与 allRank 结合使用,以提高模型性能。
通过以上内容,你应该能够快速上手 allRank 项目,并了解其在实际应用中的使用方法和最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Ascend Extension for PyTorch
Python
297
329
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
262
111
暂无简介
Dart
735
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
861
456
React Native鸿蒙化仓库
JavaScript
294
343
仓颉编译器源码及 cjdb 调试工具。
C++
148
880