Meson构建系统中disabler()的正确使用方式
2025-06-04 00:16:22作者:瞿蔚英Wynne
概述
在Meson构建系统中,disabler()是一个特殊函数,它创建的对象会禁用任何与之关联的目标。当开发者错误地将目标与disabler()对象链接时,会导致目标被静默地从构建中移除,而不会产生任何警告或错误信息。这种行为虽然设计如此,但可能会让不熟悉Meson的开发者感到困惑。
问题现象
当开发者编写如下构建定义时:
A = disabler()
B = executable('B', 'b.cc', link_with: A)
目标B将不会被构建,且Meson不会输出任何警告信息。如果尝试显式编译B,会收到"target not found"的错误提示。
Meson依赖处理的三种模式
Meson提供了三种处理依赖关系的方式:
-
可选依赖(Optional dependencies)
- 使用
required: false参数 - 如果依赖未找到,构建继续但目标可能功能受限
- 适用于可选的增强功能
- 使用
-
强制依赖(Mandatory dependencies)
- 使用
required: true参数(默认行为) - 如果依赖未找到,构建过程立即失败
- 适用于核心功能依赖
- 使用
-
禁用器依赖(Disablers)
- 使用
disabler()对象 - 如果依赖未找到,关联目标将从构建中完全移除
- 适用于条件性构建整个目标
- 使用
正确使用模式
对于大多数情况,推荐使用前两种模式而非disabler()。特别是当需要实现以下场景时:
- 可选组件工具:这些工具依赖于某些可选功能
- 条件性构建:仅在满足某些条件时才构建特定目标
更优雅的实现方式是使用Meson的feature选项或布尔值条件:
# 使用feature选项
dep = dependency('some_dep', required: get_option('build_tools'))
if dep.found()
executable('tool', 'tool.cc', dependencies: [dep])
endif
# 或使用布尔值条件
if get_option('build_tools')
dep = dependency('some_dep', required: true)
executable('tool', 'tool.cc', dependencies: [dep])
endif
性能考虑
Meson会缓存依赖查询结果,因此不必担心重复查找依赖会影响性能。开发者可以安全地在多个地方检查同一个依赖的状态。
结论
虽然disabler()有其特定用途,但在大多数构建场景中,使用required参数配合条件判断是更清晰、更易维护的选择。这种方式能够提供更明确的构建行为,并避免目标被意外地从构建中移除的情况。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492