torch-molecule 分子机器学习库使用指南
2025-06-11 14:02:22作者:卓艾滢Kingsley
概述
torch-molecule 是一个基于 PyTorch 的分子机器学习库,专注于分子性质预测和分子生成任务。它为研究人员和开发者提供了一套完整的工具链,可以方便地进行分子相关的机器学习实验和应用开发。
分子性质预测
分子性质预测是计算化学和药物发现中的重要任务。torch-molecule 提供了 GREAMolecularPredictor 等预测器,支持多种图神经网络架构和自动超参数优化。
基本使用流程
- 定义搜索参数空间:首先需要定义模型架构和训练相关的参数搜索空间
search_GNN = {
"gnn_type": ParameterSpec(ParameterType.CATEGORICAL, ["gin-virtual", "gcn-virtual", "gin", "gcn"]),
"norm_layer": ParameterSpec(ParameterType.CATEGORICAL, ["batch_norm", "layer_norm"]),
"graph_pooling": ParameterSpec(ParameterType.CATEGORICAL, ["mean", "sum", "max"]),
"augmented_feature": ParameterSpec(ParameterType.CATEGORICAL, ["maccs,morgan", "maccs", "morgan", None]),
"num_layer": ParameterSpec(ParameterType.INTEGER, (2, 5)),
"hidden_size": ParameterSpec(ParameterType.INTEGER, (64, 512)),
"drop_ratio": ParameterSpec(ParameterType.FLOAT, (0.0, 0.5)),
"learning_rate": ParameterSpec(ParameterType.LOG_FLOAT, (1e-5, 1e-2)),
"weight_decay": ParameterSpec(ParameterType.LOG_FLOAT, (1e-10, 1e-3)),
}
- 初始化预测器:根据任务类型选择合适的预测器
grea_model = GREAMolecularPredictor(
num_task=num_task,
task_type="regression",
model_name="GREA_multitask",
batch_size=BATCH_SIZE,
epochs=N_epoch,
evaluate_criterion='r2',
evaluate_higher_better=True,
verbose=True
)
- 自动拟合模型:使用 autofit 方法进行自动超参数搜索和模型训练
grea_model.autofit(
X_train=X_train.tolist(),
y_train=y_train,
X_val=X_val.tolist(),
y_val=y_val,
n_experiments=N_trial,
search_parameters=search_GREA
)
技术要点
- 支持多种 GNN 架构:GIN、GCN 等
- 提供多种图池化方法:mean、sum、max
- 可添加分子指纹作为增强特征:MACCS、Morgan 指纹等
- 内置自动超参数优化功能
分子生成
分子生成是药物发现中的关键环节,torch-molecule 提供了基于扩散模型的分子生成器 GraphDITMolecularGenerator。
基本使用流程
- 初始化生成器:指定任务类型和训练参数
model_cond = GraphDITMolecularGenerator(
task_type=['regression'] * len(property_names),
batch_size=1024,
drop_condition=0.1,
verbose=True,
epochs=10000,
)
- 训练模型:使用已知分子和性质数据进行训练
model_cond.fit(train_smiles_list, train_property_array)
- 生成分子:根据目标性质生成新分子
generated_smiles_list = model_cond.generate(test_property_array)
- 有效性检查:验证生成的分子结构是否有效
def is_valid_smiles(smiles):
if smiles is None:
return False
mol = Chem.MolFromSmiles(smiles)
return mol is not None
技术要点
- 基于扩散模型的分子生成方法
- 支持条件生成(根据目标性质生成分子)
- 内置重试机制处理无效分子
- 与 RDKit 兼容,便于后续分析
预训练模型使用
torch-molecule 支持模型的保存和加载,便于模型共享和部署。
保存和加载模型
- 保存模型到本地或模型库
model.push_to_huggingface(
repo_id=repo_id,
task_id=f"{task_name}",
metrics=metrics,
commit_message=f"Upload GREA_{task_name} model with metrics: {metrics}",
private=False
)
- 加载预训练模型
model = GREAMolecularPredictor()
model.load_model(f"{model_dir}/GREA_{task_name}.pt", repo_id=repo_id)
model.set_params(verbose=True)
- 使用模型进行预测
predictions = model.predict(smiles_list)
技术要点
- 支持模型版本管理和共享
- 保存完整的模型配置和训练指标
- 便于模型复现和部署
最佳实践
- 数据准备:确保输入数据格式正确,SMILES 字符串需要转换为列表形式
- 参数调优:合理设置搜索空间,避免过大导致搜索效率低下
- 验证策略:使用独立的验证集评估模型性能
- 错误处理:对于分子生成任务,实现适当的重试机制
- 性能监控:关注训练过程中的关键指标变化
torch-molecule 为分子机器学习提供了全面的解决方案,无论是性质预测还是分子生成任务,都能通过简洁的 API 实现高效开发。开发者可以根据具体需求选择合适的组件,快速构建分子相关的机器学习应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896