torch-molecule 分子机器学习库使用指南
2025-06-11 18:53:43作者:卓艾滢Kingsley
概述
torch-molecule 是一个基于 PyTorch 的分子机器学习库,专注于分子性质预测和分子生成任务。它为研究人员和开发者提供了一套完整的工具链,可以方便地进行分子相关的机器学习实验和应用开发。
分子性质预测
分子性质预测是计算化学和药物发现中的重要任务。torch-molecule 提供了 GREAMolecularPredictor 等预测器,支持多种图神经网络架构和自动超参数优化。
基本使用流程
- 定义搜索参数空间:首先需要定义模型架构和训练相关的参数搜索空间
search_GNN = {
"gnn_type": ParameterSpec(ParameterType.CATEGORICAL, ["gin-virtual", "gcn-virtual", "gin", "gcn"]),
"norm_layer": ParameterSpec(ParameterType.CATEGORICAL, ["batch_norm", "layer_norm"]),
"graph_pooling": ParameterSpec(ParameterType.CATEGORICAL, ["mean", "sum", "max"]),
"augmented_feature": ParameterSpec(ParameterType.CATEGORICAL, ["maccs,morgan", "maccs", "morgan", None]),
"num_layer": ParameterSpec(ParameterType.INTEGER, (2, 5)),
"hidden_size": ParameterSpec(ParameterType.INTEGER, (64, 512)),
"drop_ratio": ParameterSpec(ParameterType.FLOAT, (0.0, 0.5)),
"learning_rate": ParameterSpec(ParameterType.LOG_FLOAT, (1e-5, 1e-2)),
"weight_decay": ParameterSpec(ParameterType.LOG_FLOAT, (1e-10, 1e-3)),
}
- 初始化预测器:根据任务类型选择合适的预测器
grea_model = GREAMolecularPredictor(
num_task=num_task,
task_type="regression",
model_name="GREA_multitask",
batch_size=BATCH_SIZE,
epochs=N_epoch,
evaluate_criterion='r2',
evaluate_higher_better=True,
verbose=True
)
- 自动拟合模型:使用 autofit 方法进行自动超参数搜索和模型训练
grea_model.autofit(
X_train=X_train.tolist(),
y_train=y_train,
X_val=X_val.tolist(),
y_val=y_val,
n_experiments=N_trial,
search_parameters=search_GREA
)
技术要点
- 支持多种 GNN 架构:GIN、GCN 等
- 提供多种图池化方法:mean、sum、max
- 可添加分子指纹作为增强特征:MACCS、Morgan 指纹等
- 内置自动超参数优化功能
分子生成
分子生成是药物发现中的关键环节,torch-molecule 提供了基于扩散模型的分子生成器 GraphDITMolecularGenerator。
基本使用流程
- 初始化生成器:指定任务类型和训练参数
model_cond = GraphDITMolecularGenerator(
task_type=['regression'] * len(property_names),
batch_size=1024,
drop_condition=0.1,
verbose=True,
epochs=10000,
)
- 训练模型:使用已知分子和性质数据进行训练
model_cond.fit(train_smiles_list, train_property_array)
- 生成分子:根据目标性质生成新分子
generated_smiles_list = model_cond.generate(test_property_array)
- 有效性检查:验证生成的分子结构是否有效
def is_valid_smiles(smiles):
if smiles is None:
return False
mol = Chem.MolFromSmiles(smiles)
return mol is not None
技术要点
- 基于扩散模型的分子生成方法
- 支持条件生成(根据目标性质生成分子)
- 内置重试机制处理无效分子
- 与 RDKit 兼容,便于后续分析
预训练模型使用
torch-molecule 支持模型的保存和加载,便于模型共享和部署。
保存和加载模型
- 保存模型到本地或模型库
model.push_to_huggingface(
repo_id=repo_id,
task_id=f"{task_name}",
metrics=metrics,
commit_message=f"Upload GREA_{task_name} model with metrics: {metrics}",
private=False
)
- 加载预训练模型
model = GREAMolecularPredictor()
model.load_model(f"{model_dir}/GREA_{task_name}.pt", repo_id=repo_id)
model.set_params(verbose=True)
- 使用模型进行预测
predictions = model.predict(smiles_list)
技术要点
- 支持模型版本管理和共享
- 保存完整的模型配置和训练指标
- 便于模型复现和部署
最佳实践
- 数据准备:确保输入数据格式正确,SMILES 字符串需要转换为列表形式
- 参数调优:合理设置搜索空间,避免过大导致搜索效率低下
- 验证策略:使用独立的验证集评估模型性能
- 错误处理:对于分子生成任务,实现适当的重试机制
- 性能监控:关注训练过程中的关键指标变化
torch-molecule 为分子机器学习提供了全面的解决方案,无论是性质预测还是分子生成任务,都能通过简洁的 API 实现高效开发。开发者可以根据具体需求选择合适的组件,快速构建分子相关的机器学习应用。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44