Data-Juicer项目中图像处理算子内存溢出问题分析与解决方案
问题背景
在Data-Juicer项目使用过程中,用户反馈在执行image_text_similarity_filter和image_text_match_filter这两个图像相关算子时,出现了显存不足(OOM)的错误。虽然通过nvidia-smi查看显存占用并未达到上限,但程序仍然报错,并且未能生成预期的dj_stats统计信息。
现象分析
该问题表现出以下典型特征:
- 在A800显卡(显存80GB)环境下运行
- 使用8个进程并行处理
- 错误信息显示CUDA out of memory
- 显存监控显示实际占用未达上限
- 模型加载阶段正常,但在运算阶段报错
根本原因
经过技术分析,发现该问题由两个关键因素导致:
-
特殊标记符不匹配:Data-Juicer内部默认使用"<__dj__image>"作为图像特殊标记,而用户数据中使用的是"
"。由于当前版本存在一个已知bug,config文件中的image_special_token参数在CUDA模式下不生效,导致系统无法正确识别和处理图像标记。
-
显存管理问题:虽然总体显存充足,但由于多进程并行处理时每个进程都需要独立加载模型,加上中间计算产生的临时变量,可能导致瞬时显存需求超过单进程可用配额。
解决方案
针对上述问题,提供两种解决方案:
方案一:使用预处理数据
直接使用比赛套件中提供的预处理数据文件mgm_pretrain_stage_1.jsonl。该文件已经将所有图像特殊标记统一处理为Data-Juicer默认的"<__dj__image>"格式,无需额外设置image_special_token参数。
方案二:修改源码适配
对于需要保持原有""标记的用户,可以修改Data-Juicer源码:
- 定位到data_juicer/utils/mm_utils.py文件
- 找到SpecialTokens类
- 将其中的image属性值由默认的'<__dj__image>'改为'
'
这种方法可以绕过image_special_token参数不生效的问题,确保系统能正确识别和处理图像标记。
最佳实践建议
-
显存监控:建议在处理前使用更精细的显存监控工具,如torch.cuda.memory_allocated(),而不仅依赖nvidia-smi。
-
分批处理:对于大型数据集,可以考虑减小并行进程数或分批处理数据。
-
版本适配:关注Data-Juicer的版本更新,该问题在未来版本中可能会得到修复。
总结
Data-Juicer作为数据处理工具,在处理多媒体内容时需要注意特殊标记的统一性和显存管理。通过本文提供的解决方案,用户可以顺利解决图像处理算子中的OOM问题,确保数据处理流程的顺利进行。随着项目的持续发展,这类问题将会得到更完善的解决。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00