Qwen3项目中Dual Chunk Attention与YARN的集成机制解析
2025-05-11 10:54:31作者:董宙帆
在Qwen3项目的最新进展中,团队通过Dual Chunk Attention(DCA)和YARN技术的结合,成功实现了模型上下文窗口从32k到128k的扩展。本文将深入剖析这两种技术的协同工作机制及其在Qwen3中的具体实现方式。
DCA技术原理与应用
Dual Chunk Attention是一种创新的注意力机制实现方式,其核心思想是将长序列分割为可管理的块(chunk)。在Qwen3的实现中,DCA主要作用于推理阶段,通过将输入序列划分为24k或32k的块来处理超长上下文。
DCA的工作流程包括:
- 序列分块处理:将输入序列划分为固定大小的块
- 块内注意力计算:在每个块内部执行标准的注意力机制
- 跨块信息交互:通过特殊设计的机制实现不同块之间的信息传递
YARN技术的角色
YARN(Yet Another RoPE extensioN)是一种位置编码扩展技术,通过对query和key的点积结果进行缩放(mscale因子)来增强模型处理长序列的能力。在Qwen3中,YARN与DCA的集成体现在:
- 位置编码扩展:YARN负责处理超出预训练长度范围的位置编码
- 注意力缩放:在DCA的注意力计算过程中引入YARN的缩放因子
- 协同工作:DCA处理序列分块,YARN处理位置编码扩展
最佳实践配置
根据Qwen3团队的建议,在将上下文从32k扩展到128k时,推荐以下配置方案:
- 设置chunk_size为24k或32k
- 保持max_original_position_embedding为预训练长度32k
- 将original_max_position_embedding同样设置为32k
这种配置的优势在于:
- 确保位置ID不超过预训练长度范围
- 保持模型在已知长度范围内的稳定表现
- 通过DCA的分块机制处理超长序列
模型版本差异说明
值得注意的是,Qwen3的不同模型版本在长上下文处理上有所区别:
-
基础模型(Base Model):
- 直接支持从32k到128k的长度外推
- max_position_embedding设置为128k
- 在PPL评估中表现稳定
-
指令微调模型(Instruct Model):
- 需要结合YARN或DCA技术
- 以获得更好的长上下文处理性能
- 配置方式与基础模型有所不同
技术实现要点
在实际应用中,开发者需要注意以下关键技术细节:
- 分块大小的选择:24k或32k都是可行的选项
- 位置编码处理:确保不超过预训练范围
- 缩放因子的应用:在注意力计算中正确实现YARN的缩放
- 推理优化:结合DCA的分块机制提高长序列处理效率
通过这种技术组合,Qwen3项目成功实现了模型处理超长上下文的能力提升,为大规模语言模型的应用开辟了新的可能性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134