Glaze 5.0.0 版本发布:更灵活的编译选项与序列化改进
Glaze 是一个高性能的 C++ JSON 和二进制序列化库,它通过编译时反射和模板元编程技术,提供了简单易用且高效的序列化解决方案。最新发布的 5.0.0 版本带来了一些重要的架构改进和功能增强,使库更加灵活和易于扩展。
可定制的编译时选项
在 5.0.0 版本中,glz::opts 结构体现在只是默认选项集,用户可以通过创建自定义选项结构体来添加更专门的选项。这一变化将较少使用的选项移出了默认的 glz::opts,减少了使用 Glaze 时的编译器错误长度,并使未来处理更多选项变得更加容易管理。
被移出默认选项的功能包括:
- 验证跳过值
- 验证尾部空白
- 连接范围到单个对象
- 允许类型转换
- 写入变体类型信息
- 动态容器收缩以节省内存
- 隐藏不可调用成员
用户现在可以通过继承 glz::opts 并添加所需字段来创建自定义选项结构体。这种设计使得库的核心更加精简,同时保留了扩展能力。
序列化/解析逻辑的命名空间简化
在自定义序列化/解析逻辑时,需要特化的 to/from 结构体已从 detail 命名空间移出,现在直接位于 glz 命名空间中。许多其他概念和辅助函数也从 detail 命名空间中移出,使自定义序列化和解析代码更加清晰。
此外,类型推导函子 glz::detail::read 和 glz::detail::write 被重命名为 parse 和 serialize,并移出了 detail 命名空间。这一变更消除了与函数 glz::read 和 glz::write 的命名混淆,使 API 更加直观。
通用支持概念
5.0.0 版本移除了特定于格式的概念如 read_json_supported 和 write_beve_supported,转而使用更通用的解决方案。新的通用概念定义如下:
template <uint32_t Format, class T>
concept write_supported = requires { detail::to<Format, std::remove_cvref_t<T>>{}; };
template <uint32_t Format, class T>
concept read_supported = requires { detail::from<Format, std::remove_cvref_t<T>>{}; };
这种更通用的方法简化了代码,并使添加新格式更加清晰,用户现在可以在不修改主 Glaze 仓库的情况下添加自定义格式。
其他改进
- 为 MSVC 编译器添加了额外的最大限制保护
- 在
glz::asio_server中,当端口设置为 0 时,现在可以访问分配的端口号
总结
Glaze 5.0.0 版本通过引入可定制的编译选项、简化命名空间结构以及采用更通用的支持概念,显著提高了库的灵活性和可扩展性。这些改进使开发者能够更精细地控制序列化行为,同时保持代码的简洁性和可读性。对于需要高性能序列化解决方案的 C++ 项目来说,Glaze 5.0.0 提供了一个更加成熟和灵活的选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00