LatentSync项目中文唇形同步模型数据集准备指南
数据集基本要求
在LatentSync项目中训练中文唇形同步模型时,数据集准备是至关重要的第一步。根据项目经验,数据集需要满足以下几个核心要求:
-
视频分辨率:虽然原始视频尺寸没有严格要求,但人脸区域必须保证至少256x256像素的分辨率。项目中的
filter_high_resolution.py脚本会自动筛选符合这一标准的视频。 -
音频质量:所有视频必须包含清晰、完整的音轨,这是唇形同步模型训练的基础。音频质量会直接影响最终模型的同步效果。
-
视频清晰度:视频画面需要足够清晰,特别是人脸区域。可以使用现代质量评估模型(如Q-Align)来自动过滤低质量视频,替代传统的hyperIQA方法。
数据集处理流程
LatentSync项目的数据处理流程包含几个关键步骤:
-
视频筛选:首先通过分辨率筛选确保人脸区域足够大,然后使用质量评估模型过滤低质量视频。
-
人脸裁剪:项目会自动从视频中裁剪出人脸区域,这是模型训练的直接输入。
-
音频处理:虽然问题中提到音频似乎没有被处理,但实际上音频会被提取并与视频帧对齐。音频会被转换为mel频谱图,这是唇形同步模型理解语音特征的关键步骤。
推荐数据集资源
对于中文唇形同步任务,可以考虑以下数据集资源:
-
通用人脸视频数据集:如HDTF、VoxCeleb2等,这些数据集包含大量说话人视频,虽然主要不是中文内容,但可以作为基础训练集。
-
中文专用数据集:CelebV-HQ和CelebV-Text是较新的高质量中文数据集,特别适合中文唇形同步任务。
-
自建数据集:如果需要特定场景或口型的中文数据,可以自行录制。录制时需注意环境光线、背景简洁、发音清晰等要素。
实践建议
-
数据多样性:确保数据集中包含不同性别、年龄、口型的说话人,以提高模型泛化能力。
-
预处理优化:可以尝试更新视频质量评估模型,如使用基于Transformer架构的最新质量评估方法。
-
数据增强:在预处理阶段可以考虑加入适度的数据增强,如亮度调整、轻微旋转等,但要注意保持唇形特征不变。
-
音频视频同步检查:确保所有视频的音频和画面严格同步,这是唇形同步模型训练成功的关键前提。
通过遵循这些指南,研究者可以有效地为LatentSync项目准备高质量的训练数据集,为后续的唇形同步模型训练打下坚实基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00