Tamagui项目中Android平台Sheet组件内使用tRPC的注意事项
问题背景
在Tamagui项目的开发过程中,开发者发现了一个特定于Android平台的问题:当在Sheet组件内部使用tRPC的useQuery进行数据查询时,在Expo开发客户端环境下会出现错误,而在常规Expo启动方式或iOS/Web平台上则工作正常。
技术原理分析
这个问题本质上与Tamagui的Sheet组件实现机制有关。在Android平台上,Sheet组件使用了Portal技术将内容渲染到应用的根节点。这种实现方式会导致:
-
上下文丢失:由于Portal将组件移到了DOM树的更高层级,原本在组件树中传递的React上下文(如tRPC的Provider)将无法被Sheet内部的组件访问到。
-
平台差异:iOS和Web平台对Portal的实现方式不同,它们能够原生处理Portal,因此不会出现上下文丢失的问题。
解决方案
针对这个问题,开发者可以采取以下两种解决方案:
-
提升Provider层级:将tRPC的Provider组件移动到TamaguiProvider的更上层,确保它能够覆盖整个应用,包括通过Portal渲染的内容。
-
在Sheet内部重新提供上下文:在Sheet组件内部重新包装tRPC的Provider,确保内部组件能够访问到必要的上下文。
最佳实践建议
-
统一上下文管理:对于跨平台应用,建议将全局状态和API客户端Provider放在应用的最顶层组件中。
-
组件隔离测试:在开发过程中,特别是在使用Portal类组件时,应该在不同平台上进行充分测试。
-
错误边界处理:对于可能通过Portal渲染的组件,添加适当的错误边界处理,提高应用健壮性。
总结
这个案例展示了跨平台开发中常见的上下文管理问题。理解不同平台对组件渲染机制的差异,对于构建稳定的跨平台应用至关重要。Tamagui作为优秀的跨平台UI库,虽然抽象了大部分平台差异,但在某些特定场景下仍需要开发者注意这些底层实现细节。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00