Apache Storm调度器内存计算缺陷分析与修复
问题背景
Apache Storm作为分布式实时计算系统,其资源调度机制对系统稳定性至关重要。近期发现调度器存在一个关键缺陷:在计算拓扑资源需求时,未将Acker任务的内存消耗纳入考量范围。这一疏忽可能导致调度决策失误,进而引发拓扑无法正常部署的问题。
问题现象
在特定场景下,当拓扑理论上应部署在两个工作节点上,而集群中仅有1个可用工作节点且2个被列入黑名单时,调度器错误地认为该拓扑可以部署在单个工作节点上。由于实际资源不足,调度失败,但系统又未能从黑名单中释放工作节点,最终导致拓扑陷入永久无法调度的状态。
技术分析
Acker机制的重要性
在Storm架构中,Acker负责消息处理可靠性的保障,它会跟踪每个元组(tuple)的处理状态。每个拓扑都会自动创建Acker任务,这些任务会消耗内存资源。原先的调度器实现忽略了这部分固定开销,导致资源预估不准确。
调度算法缺陷
调度器在计算拓扑资源需求时,仅考虑了用户显式配置的组件资源,而忽略了系统内部组件(Acker)的资源消耗。这种不完整的资源计算会导致:
- 资源预估偏低,可能尝试在不满足条件的节点上部署
- 黑名单机制失效,无法正确判断何时需要释放节点
- 集群资源利用率计算失真
解决方案
修复方案主要包含两个关键改进:
-
完善资源计算逻辑:在调度器计算拓扑资源需求时,显式加入Acker任务的内存消耗。这确保了资源预估的准确性,使调度决策基于完整的资源需求。
-
日志级别调整:将部分调度相关的日志从TRACE级别提升至DEBUG级别。这一改动虽然简单,但极大提升了运维人员在诊断调度问题时的效率,使关键调度信息更易于获取。
修复效果
修复后,调度器能够:
- 准确识别拓扑实际需要的工作节点数量
- 在资源不足时正确触发黑名单释放机制
- 确保拓扑最终能够成功部署
在原先的问题场景中,调度器现在能够正确判断拓扑需要两个工作节点,主动从黑名单释放一个节点,并完成拓扑部署。
经验总结
这个案例揭示了分布式系统资源调度中的常见陷阱:系统内部组件的资源消耗容易被忽视。开发人员在设计调度算法时,必须全面考虑所有资源消耗源,包括:
- 用户显式配置的组件
- 系统隐式创建的内部组件
- 可能存在的资源开销余量
同时,适当的日志级别设置对于运维诊断至关重要,关键路径上的日志信息应当保持合理的可见性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01