Earthly项目中SAVE命令在目标链中的行为解析
2025-05-19 08:52:56作者:俞予舒Fleming
概述
在Earthly构建系统中,SAVE IMAGE和SAVE ARTIFACT命令的行为可能会让开发者感到困惑。本文将通过实际案例深入分析这些命令在不同目标链中的表现,帮助开发者更好地理解Earthly的构建机制。
核心问题分析
Earthly构建系统中的SAVE命令(包括SAVE IMAGE和SAVE ARTIFACT)在目标链中的行为遵循特定规则:
- 直接调用:当直接调用包含SAVE命令的目标时,命令会正常执行
- 目标链调用:通过其他目标间接调用时,SAVE命令的行为会发生变化
典型场景测试
测试案例1:基础目标链
考虑以下Earthfile结构:
VERSION 0.8
docker:
FROM ubuntu:22.04
SAVE IMAGE earthly-test:latest
build:
FROM +docker
COPY --dir input ./
SAVE ARTIFACT input AS LOCAL output
all:
BUILD +build
执行不同命令时的结果:
+all:不创建镜像,但创建输出目录+build:不创建镜像,但创建输出目录+docker:创建镜像,不创建输出目录
测试案例2:扩展目标链
扩展后的Earthfile结构:
VERSION 0.8
docker:
FROM ubuntu:22.04
SAVE IMAGE earthly-test:latest
build:
FROM +docker
COPY --dir input ./
SAVE ARTIFACT input AS LOCAL output
tests:
FROM +build
all:
BUILD +tests
执行结果变化:
+all和+tests:既不创建镜像也不创建输出目录+build:不创建镜像但创建输出目录+docker:创建镜像但不创建输出目录
行为原理解析
Earthly构建系统中SAVE命令的行为遵循以下核心原则:
- BUILD命令是关键:只有通过BUILD命令形成的目标链才会触发SAVE命令的执行
- FROM命令的局限性:FROM命令不会触发被引用目标中的SAVE命令执行
- 链式传播特性:SAVE效果只能通过BUILD命令在目标链中传播
解决方案与实践
要确保SAVE命令在目标链中正确执行,应采用以下模式:
VERSION 0.8
docker:
FROM ubuntu:22.04
SAVE IMAGE earthly-test:latest
build:
BUILD +docker
FROM +docker
COPY --dir input ./
SAVE ARTIFACT input AS LOCAL output
tests:
BUILD +build
all:
BUILD +tests
这种模式的关键点:
- 在需要SAVE效果传播的目标中显式使用BUILD命令
- 同时使用FROM命令获取构建环境
- 确保目标链中的每个环节都通过BUILD连接
高级技巧:函数封装
对于需要频繁使用的BUILD+FROM组合,可以封装为函数:
BUILD_AND_FROM:
FUNCTION
ARG target
BUILD --pass-args $target
FROM --pass-args $target
build:
DO +BUILD_AND_FROM --target=+docker
COPY --dir input ./
SAVE ARTIFACT input AS LOCAL output
这种方法提高了代码的复用性和可读性。
总结
理解Earthly中SAVE命令的行为机制对于构建复杂的多阶段构建流程至关重要。开发者应记住:
- BUILD命令是SAVE效果传播的必要条件
- 在需要SAVE效果时,必须显式使用BUILD命令
- 合理组织目标链结构可以确保构建产物按预期生成
通过掌握这些原则,开发者可以更高效地利用Earthly构建系统,避免常见的构建产物丢失问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1