Earthly项目中SAVE命令在目标链中的行为解析
2025-05-19 18:25:07作者:俞予舒Fleming
概述
在Earthly构建系统中,SAVE IMAGE和SAVE ARTIFACT命令的行为可能会让开发者感到困惑。本文将通过实际案例深入分析这些命令在不同目标链中的表现,帮助开发者更好地理解Earthly的构建机制。
核心问题分析
Earthly构建系统中的SAVE命令(包括SAVE IMAGE和SAVE ARTIFACT)在目标链中的行为遵循特定规则:
- 直接调用:当直接调用包含SAVE命令的目标时,命令会正常执行
 - 目标链调用:通过其他目标间接调用时,SAVE命令的行为会发生变化
 
典型场景测试
测试案例1:基础目标链
考虑以下Earthfile结构:
VERSION 0.8
docker:
    FROM ubuntu:22.04
    SAVE IMAGE earthly-test:latest
build:
    FROM +docker
    COPY --dir input ./
    SAVE ARTIFACT input AS LOCAL output
all:
    BUILD +build
执行不同命令时的结果:
+all:不创建镜像,但创建输出目录+build:不创建镜像,但创建输出目录+docker:创建镜像,不创建输出目录
测试案例2:扩展目标链
扩展后的Earthfile结构:
VERSION 0.8
docker:
    FROM ubuntu:22.04
    SAVE IMAGE earthly-test:latest
build:
    FROM +docker
    COPY --dir input ./
    SAVE ARTIFACT input AS LOCAL output
tests:
    FROM +build
all:
    BUILD +tests
执行结果变化:
+all和+tests:既不创建镜像也不创建输出目录+build:不创建镜像但创建输出目录+docker:创建镜像但不创建输出目录
行为原理解析
Earthly构建系统中SAVE命令的行为遵循以下核心原则:
- BUILD命令是关键:只有通过BUILD命令形成的目标链才会触发SAVE命令的执行
 - FROM命令的局限性:FROM命令不会触发被引用目标中的SAVE命令执行
 - 链式传播特性:SAVE效果只能通过BUILD命令在目标链中传播
 
解决方案与实践
要确保SAVE命令在目标链中正确执行,应采用以下模式:
VERSION 0.8
docker:
    FROM ubuntu:22.04
    SAVE IMAGE earthly-test:latest
build:
    BUILD +docker
    FROM +docker
    COPY --dir input ./
    SAVE ARTIFACT input AS LOCAL output
tests:
    BUILD +build
all:
    BUILD +tests
这种模式的关键点:
- 在需要SAVE效果传播的目标中显式使用BUILD命令
 - 同时使用FROM命令获取构建环境
 - 确保目标链中的每个环节都通过BUILD连接
 
高级技巧:函数封装
对于需要频繁使用的BUILD+FROM组合,可以封装为函数:
BUILD_AND_FROM:
    FUNCTION
    ARG target
    BUILD --pass-args $target
    FROM --pass-args $target
build:
    DO +BUILD_AND_FROM --target=+docker
    COPY --dir input ./
    SAVE ARTIFACT input AS LOCAL output
这种方法提高了代码的复用性和可读性。
总结
理解Earthly中SAVE命令的行为机制对于构建复杂的多阶段构建流程至关重要。开发者应记住:
- BUILD命令是SAVE效果传播的必要条件
 - 在需要SAVE效果时,必须显式使用BUILD命令
 - 合理组织目标链结构可以确保构建产物按预期生成
 
通过掌握这些原则,开发者可以更高效地利用Earthly构建系统,避免常见的构建产物丢失问题。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446