在pgmpy中为贝叶斯网络DAG图添加边权重可视化
2025-06-28 22:20:41作者:瞿蔚英Wynne
背景介绍
在概率图模型分析中,贝叶斯网络是一种重要的工具,它通过有向无环图(DAG)表示变量间的依赖关系。pgmpy作为Python中的概率图模型库,提供了构建和分析贝叶斯网络的功能。但在可视化时,默认的图形展示往往缺少边权重这一重要信息。
边权重计算方法
对于离散变量构成的贝叶斯网络,直接获取边权重并非易事。pgmpy提供了几种替代方案:
-
使用Pillai迹检验:通过计算变量间的条件独立性检验统计量作为权重指标。在较新版本中,该函数名为
pillai_trace,而在0.1.26版本中则为ci_pillai。 -
规范相关系数:也可以考虑使用其他相关性度量作为边权重的替代指标。
实现方法详解
方法一:使用NetworkX绘制带权图
# 计算边权重
weights = {}
for u, v in dag.edges():
u_parent = set(dag.get_parents(u))
v_parent = set(dag.get_parents(v))
cond_vars = u_parent.union(v_parent)
res = ci_pillai(X=u, Y=v, Z=cond_vars, data=data, boolean=False)[0]
weights[(u,v)] = f"{res:.2e}"
# 添加权重属性
nx.set_edge_attributes(dag, weights, 'weight')
# 可视化
pos = nx.circular_layout(dag)
edge_labels = nx.get_edge_attributes(dag, 'weight')
nx.draw(dag, pos, with_labels=True, ...)
nx.draw_networkx_edge_labels(dag, pos, edge_labels=edge_labels)
方法二:使用Graphviz绘制(推荐)
model_graphviz = model.to_graphviz()
for u, v in model_graphviz.edges():
edge = model_graphviz.get_edge(u, v)
edge.attr['label'] = '权重值' # 此处填入计算得到的权重
model_graphviz.draw('output.png', prog='dot')
技术要点说明
-
权重计算原理:Pillai迹检验通过评估给定条件下变量间的关联强度,适合作为离散变量间依赖强度的度量。
-
可视化选择:
- NetworkX适合快速原型开发
- Graphviz生成的图形更加专业美观
-
版本差异:注意不同pgmpy版本中函数名的变化,新版本使用
pillai_trace,旧版本使用ci_pillai。
实际应用建议
-
对于大型网络,建议先进行边权重计算,再选择性显示重要边
-
可以结合节点着色方案,如使用不同颜色表示:
- 目标节点
- 马尔可夫毯节点
- 其他节点
-
权重显示格式建议使用科学计数法,保持图形整洁
通过这种方法,研究者可以更直观地理解贝叶斯网络中变量间依赖的强弱关系,为后续的分析和决策提供可视化支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219