Masstree 技术文档
本文档旨在帮助用户安装、使用 Masstree 项目,并详细说明其 API 使用方法。以下是文章的主要内容:
1. 安装指南
Masstree 是一个快速的、多核键值存储系统。以下是 Masstree 的安装步骤:
-
在 Debian、Ubuntu 或 Mac OS X 系统中,从源代码构建 Masstree:
$ ./bootstrap.sh $ ./configure $ make -
为了性能测试,您应该禁用断言:
$ ./configure --disable-assertions -
Masstree 需要快速的内存分配器,可以链接到 jemalloc、Google 的 tcmalloc、Hoard 或自定义的 Flow 分配器。默认情况下,它会选择 jemalloc 或 tcmalloc。如果要指定特定的内存分配器,请使用以下命令:
$ ./configure --with-malloc=<jemalloc|tcmalloc|flow|hoard> -
查看更多配置选项,可以运行:
$ ./configure --help
2. 项目的使用说明
使用 mttest 程序可以最简单地尝试 Masstree。此测试不涉及磁盘或网络开销。
运行以下命令启动测试:
$ ./mttest
测试将启动一个进程,该进程托管一个 Masstree 实例,并生成和执行树上的查询。它使用所有可用的核心。测试持续 20 秒钟,在前 10 秒钟内使用 put 查询填充键值存储,然后在接下来的 10 秒钟内对树执行 get 查询。
输出将总结每个核心的吞吐量。例如:
1/1 rw1/m
0: now getting
1: now getting
0: {"table":"mb","test":"rw1",...}
mttest 还可以将标准输出重定向到文件或管道,生成 gnuplot 源码以绘制中位数每核心吞吐量。
3. 项目 API 使用文档
Masstree 的 API 使用方法在项目的官方文档中进行了说明。由于项目具体 API 的详细说明不在本文档的范围内,建议用户参考项目提供的官方文档和示例代码。
4. 项目安装方式
Masstree 的安装方式已在“安装指南”部分详细描述。以下是简要步骤:
- 运行
bootstrap.sh脚本。 - 运行
configure命令。 - 使用
make命令构建项目。
如果需要指定内存分配器或禁用断言,请在 configure 阶段添加相应的参数。
本文档提供了 Masstree 项目的安装和使用方法,以及 API 的简要说明。用户应参考项目的官方文档以获取更详细的 API 信息和使用示例。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00