django-recommends 技术文档
2024-12-26 13:35:13作者:何将鹤
1. 安装指南
1.1 环境要求
在安装 django-recommends 之前,请确保您的开发环境满足以下要求:
- Python 3.6 或更高版本
- Django 2.2 或更高版本
1.2 安装步骤
您可以通过以下步骤安装 django-recommends:
-
使用
pip安装:pip install django-recommends -
将
recommends添加到您的 Django 项目的INSTALLED_APPS设置中:INSTALLED_APPS = [ ... 'recommends', ... ] -
运行数据库迁移命令以创建必要的数据库表:
python manage.py migrate
2. 项目的使用说明
2.1 基本使用
django-recommends 是一个基于物品的推荐系统,它可以帮助您为用户生成个性化的推荐内容。以下是基本的使用步骤:
-
定义模型:首先,您需要在您的 Django 应用中定义用户和物品的模型。例如:
from django.db import models class User(models.Model): username = models.CharField(max_length=100) class Item(models.Model): name = models.CharField(max_length=100) -
注册模型:使用
recommends提供的装饰器注册您的模型:from recommends.providers import RecommendationProvider from recommends.registry import register @register class ItemProvider(RecommendationProvider): model = Item -
生成推荐:在用户与物品交互后,您可以使用
recommends生成推荐:from recommends.models import Recommendation recommendations = Recommendation.objects.for_user(user)
2.2 高级功能
django-recommends 还提供了一些高级功能,例如:
- 自定义推荐算法:您可以通过继承
RecommendationProvider类来实现自定义的推荐算法。 - 推荐缓存:为了提高性能,您可以使用缓存来存储推荐结果。
3. 项目API使用文档
3.1 RecommendationProvider
RecommendationProvider 是 django-recommends 的核心类,用于定义推荐提供者。以下是其主要方法:
- get_recommendations(user):为指定用户生成推荐。
- get_similar_items(item):获取与指定物品相似的物品。
3.2 Recommendation
Recommendation 模型用于存储推荐结果。以下是其主要字段:
- user:推荐的目标用户。
- item:被推荐的物品。
- score:推荐分数,表示推荐的强度。
3.3 其他API
django-recommends 还提供了其他一些辅助 API,例如:
- recommends.registry.register:用于注册推荐提供者。
- recommends.utils.get_recommendations:用于获取推荐结果。
4. 项目安装方式
4.1 通过源码安装
如果您希望从源码安装 django-recommends,可以按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/fcurella/django-recommends.git -
进入项目目录并安装依赖:
cd django-recommends pip install -r requirements.txt -
将
recommends目录复制到您的 Django 项目中,并按照上述步骤进行配置。
4.2 通过 Docker 安装
如果您使用 Docker,可以通过以下步骤安装 django-recommends:
-
创建一个
Dockerfile,并添加以下内容:FROM python:3.8 WORKDIR /app COPY . /app RUN pip install -r requirements.txt -
构建并运行 Docker 容器:
docker build -t django-recommends . docker run -it django-recommends
通过以上步骤,您应该能够成功安装并使用 django-recommends。希望这篇文档能帮助您更好地理解和使用该项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758