django-recommends 技术文档
2024-12-26 15:34:28作者:何将鹤
1. 安装指南
1.1 环境要求
在安装 django-recommends 之前,请确保您的开发环境满足以下要求:
- Python 3.6 或更高版本
- Django 2.2 或更高版本
1.2 安装步骤
您可以通过以下步骤安装 django-recommends:
-
使用
pip安装:pip install django-recommends -
将
recommends添加到您的 Django 项目的INSTALLED_APPS设置中:INSTALLED_APPS = [ ... 'recommends', ... ] -
运行数据库迁移命令以创建必要的数据库表:
python manage.py migrate
2. 项目的使用说明
2.1 基本使用
django-recommends 是一个基于物品的推荐系统,它可以帮助您为用户生成个性化的推荐内容。以下是基本的使用步骤:
-
定义模型:首先,您需要在您的 Django 应用中定义用户和物品的模型。例如:
from django.db import models class User(models.Model): username = models.CharField(max_length=100) class Item(models.Model): name = models.CharField(max_length=100) -
注册模型:使用
recommends提供的装饰器注册您的模型:from recommends.providers import RecommendationProvider from recommends.registry import register @register class ItemProvider(RecommendationProvider): model = Item -
生成推荐:在用户与物品交互后,您可以使用
recommends生成推荐:from recommends.models import Recommendation recommendations = Recommendation.objects.for_user(user)
2.2 高级功能
django-recommends 还提供了一些高级功能,例如:
- 自定义推荐算法:您可以通过继承
RecommendationProvider类来实现自定义的推荐算法。 - 推荐缓存:为了提高性能,您可以使用缓存来存储推荐结果。
3. 项目API使用文档
3.1 RecommendationProvider
RecommendationProvider 是 django-recommends 的核心类,用于定义推荐提供者。以下是其主要方法:
- get_recommendations(user):为指定用户生成推荐。
- get_similar_items(item):获取与指定物品相似的物品。
3.2 Recommendation
Recommendation 模型用于存储推荐结果。以下是其主要字段:
- user:推荐的目标用户。
- item:被推荐的物品。
- score:推荐分数,表示推荐的强度。
3.3 其他API
django-recommends 还提供了其他一些辅助 API,例如:
- recommends.registry.register:用于注册推荐提供者。
- recommends.utils.get_recommendations:用于获取推荐结果。
4. 项目安装方式
4.1 通过源码安装
如果您希望从源码安装 django-recommends,可以按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/fcurella/django-recommends.git -
进入项目目录并安装依赖:
cd django-recommends pip install -r requirements.txt -
将
recommends目录复制到您的 Django 项目中,并按照上述步骤进行配置。
4.2 通过 Docker 安装
如果您使用 Docker,可以通过以下步骤安装 django-recommends:
-
创建一个
Dockerfile,并添加以下内容:FROM python:3.8 WORKDIR /app COPY . /app RUN pip install -r requirements.txt -
构建并运行 Docker 容器:
docker build -t django-recommends . docker run -it django-recommends
通过以上步骤,您应该能够成功安装并使用 django-recommends。希望这篇文档能帮助您更好地理解和使用该项目。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443