django-recommends 技术文档
2024-12-26 09:55:17作者:何将鹤
1. 安装指南
1.1 环境要求
在安装 django-recommends
之前,请确保您的开发环境满足以下要求:
- Python 3.6 或更高版本
- Django 2.2 或更高版本
1.2 安装步骤
您可以通过以下步骤安装 django-recommends
:
-
使用
pip
安装:pip install django-recommends
-
将
recommends
添加到您的 Django 项目的INSTALLED_APPS
设置中:INSTALLED_APPS = [ ... 'recommends', ... ]
-
运行数据库迁移命令以创建必要的数据库表:
python manage.py migrate
2. 项目的使用说明
2.1 基本使用
django-recommends
是一个基于物品的推荐系统,它可以帮助您为用户生成个性化的推荐内容。以下是基本的使用步骤:
-
定义模型:首先,您需要在您的 Django 应用中定义用户和物品的模型。例如:
from django.db import models class User(models.Model): username = models.CharField(max_length=100) class Item(models.Model): name = models.CharField(max_length=100)
-
注册模型:使用
recommends
提供的装饰器注册您的模型:from recommends.providers import RecommendationProvider from recommends.registry import register @register class ItemProvider(RecommendationProvider): model = Item
-
生成推荐:在用户与物品交互后,您可以使用
recommends
生成推荐:from recommends.models import Recommendation recommendations = Recommendation.objects.for_user(user)
2.2 高级功能
django-recommends
还提供了一些高级功能,例如:
- 自定义推荐算法:您可以通过继承
RecommendationProvider
类来实现自定义的推荐算法。 - 推荐缓存:为了提高性能,您可以使用缓存来存储推荐结果。
3. 项目API使用文档
3.1 RecommendationProvider
RecommendationProvider
是 django-recommends
的核心类,用于定义推荐提供者。以下是其主要方法:
- get_recommendations(user):为指定用户生成推荐。
- get_similar_items(item):获取与指定物品相似的物品。
3.2 Recommendation
Recommendation
模型用于存储推荐结果。以下是其主要字段:
- user:推荐的目标用户。
- item:被推荐的物品。
- score:推荐分数,表示推荐的强度。
3.3 其他API
django-recommends
还提供了其他一些辅助 API,例如:
- recommends.registry.register:用于注册推荐提供者。
- recommends.utils.get_recommendations:用于获取推荐结果。
4. 项目安装方式
4.1 通过源码安装
如果您希望从源码安装 django-recommends
,可以按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/fcurella/django-recommends.git
-
进入项目目录并安装依赖:
cd django-recommends pip install -r requirements.txt
-
将
recommends
目录复制到您的 Django 项目中,并按照上述步骤进行配置。
4.2 通过 Docker 安装
如果您使用 Docker,可以通过以下步骤安装 django-recommends
:
-
创建一个
Dockerfile
,并添加以下内容:FROM python:3.8 WORKDIR /app COPY . /app RUN pip install -r requirements.txt
-
构建并运行 Docker 容器:
docker build -t django-recommends . docker run -it django-recommends
通过以上步骤,您应该能够成功安装并使用 django-recommends
。希望这篇文档能帮助您更好地理解和使用该项目。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8