django-recommends 技术文档
2024-12-26 16:03:39作者:何将鹤
1. 安装指南
1.1 环境要求
在安装 django-recommends 之前,请确保您的开发环境满足以下要求:
- Python 3.6 或更高版本
- Django 2.2 或更高版本
1.2 安装步骤
您可以通过以下步骤安装 django-recommends:
-
使用
pip安装:pip install django-recommends -
将
recommends添加到您的 Django 项目的INSTALLED_APPS设置中:INSTALLED_APPS = [ ... 'recommends', ... ] -
运行数据库迁移命令以创建必要的数据库表:
python manage.py migrate
2. 项目的使用说明
2.1 基本使用
django-recommends 是一个基于物品的推荐系统,它可以帮助您为用户生成个性化的推荐内容。以下是基本的使用步骤:
-
定义模型:首先,您需要在您的 Django 应用中定义用户和物品的模型。例如:
from django.db import models class User(models.Model): username = models.CharField(max_length=100) class Item(models.Model): name = models.CharField(max_length=100) -
注册模型:使用
recommends提供的装饰器注册您的模型:from recommends.providers import RecommendationProvider from recommends.registry import register @register class ItemProvider(RecommendationProvider): model = Item -
生成推荐:在用户与物品交互后,您可以使用
recommends生成推荐:from recommends.models import Recommendation recommendations = Recommendation.objects.for_user(user)
2.2 高级功能
django-recommends 还提供了一些高级功能,例如:
- 自定义推荐算法:您可以通过继承
RecommendationProvider类来实现自定义的推荐算法。 - 推荐缓存:为了提高性能,您可以使用缓存来存储推荐结果。
3. 项目API使用文档
3.1 RecommendationProvider
RecommendationProvider 是 django-recommends 的核心类,用于定义推荐提供者。以下是其主要方法:
- get_recommendations(user):为指定用户生成推荐。
- get_similar_items(item):获取与指定物品相似的物品。
3.2 Recommendation
Recommendation 模型用于存储推荐结果。以下是其主要字段:
- user:推荐的目标用户。
- item:被推荐的物品。
- score:推荐分数,表示推荐的强度。
3.3 其他API
django-recommends 还提供了其他一些辅助 API,例如:
- recommends.registry.register:用于注册推荐提供者。
- recommends.utils.get_recommendations:用于获取推荐结果。
4. 项目安装方式
4.1 通过源码安装
如果您希望从源码安装 django-recommends,可以按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/fcurella/django-recommends.git -
进入项目目录并安装依赖:
cd django-recommends pip install -r requirements.txt -
将
recommends目录复制到您的 Django 项目中,并按照上述步骤进行配置。
4.2 通过 Docker 安装
如果您使用 Docker,可以通过以下步骤安装 django-recommends:
-
创建一个
Dockerfile,并添加以下内容:FROM python:3.8 WORKDIR /app COPY . /app RUN pip install -r requirements.txt -
构建并运行 Docker 容器:
docker build -t django-recommends . docker run -it django-recommends
通过以上步骤,您应该能够成功安装并使用 django-recommends。希望这篇文档能帮助您更好地理解和使用该项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1