SwanLab 开源实验追踪工具指南
2024-08-17 08:46:44作者:羿妍玫Ivan
项目介绍
SwanLab 是一个轻量级的 AI 实验跟踪平台,旨在提供一个全面的解决方案来记录、比较及协作实验。它通过一个用户友好的 API 和直观的界面,集成超参数追踪、指标记录、在线合作和实验分享链接等功能,帮助研究人员和工程师高效管理他们的机器学习项目。
项目快速启动
安装
首先,确保你的环境中已经安装了 Git 和 Python。之后,通过以下命令克隆 SwanLab 到本地:
git clone https://github.com/SwanHubX/SwanLab.git
cd SwanLab
接下来,安装必要的依赖项,通常是通过 pip 进行:
pip install -r requirements.txt
获取 API 密钥,你需要访问 SwanLab 的官方文档或注册账户以获取API Key。这一步是登录和集成的关键。
集成到你的代码中
在你的项目中引入 SwanLab,示例如下:
from swanlab import Experiment
# 初始化一个实验实例
exp = Experiment(api_key="你的API密钥")
exp.name = "我的第一个实验"
# 记录超参数
exp.log_hyperparameters({"learning_rate": 0.01, "batch_size": 32})
# 训练循环中记录指标
for epoch in range(10):
exp.log_metric("accuracy", 0.9 + epoch*0.01, step=epoch)
# 提交实验数据
exp.save()
应用案例和最佳实践
在实际开发中,SwanLab 可广泛应用于模型训练的监控与优化。例如,在进行深度学习研究时,你可以:
- 超参数调优:系统地记录每次试验的不同超参数设置,便于分析哪个配置最优。
- 版本控制:对不同的模型版本进行标记,轻松回溯和复现历史实验。
- 团队合作:共享实验链接,让团队成员可以实时查看和讨论实验进展。
- 性能可视化:利用 SwanLab 的特性,如表格功能,来筛选和对比不同条件下模型的表现,找到最好的模型版本。
典型生态项目
虽然直接关联的“典型生态项目”信息没有从提供的材料中提取出来,SwanLab 作为实验管理工具,其生态可理解为与其他机器学习框架(如 TensorFlow, PyTorch)的兼容性,以及能够与数据科学工作流程中的其他工具(比如GitLab CI/CD,Docker容器化部署等)协同工作的能力。开发者通常将 SwanLab 集成到他们的研究和开发管线中,实现从数据预处理、模型训练到评估的全程追踪和管理。
为了进一步探索其在特定项目中的应用,开发者可以参考 SwanLab 的社区示例、GitHub上的星标项目或是官方文档中提到的案例研究。通过这些资源,用户能够更好地理解如何在自己的AI项目中利用SwanLab达到更高效的实验管理和团队协作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355