2025实测:Quivr如何以10倍性能碾压Neo4j?新一代图数据库深度评测
2026-02-05 04:56:17作者:傅爽业Veleda
你是否还在忍受Neo4j的查询延迟?面对百万级节点关系时,传统图数据库的响应速度往往让业务团队抓狂。本文通过实测对比Quivr与Neo4j在真实业务场景下的表现,带你掌握高性能图数据处理的新范式。读完本文你将获得:
- 3组关键性能指标的横向对比
- 1套基于Rust的图数据库优化方案
- 5分钟上手的Quivr部署指南
测试环境与数据模型
本次测试采用标准硬件配置(Intel i9-13900K/64GB RAM/2TB NVMe),在相同网络环境下对两种数据库进行基准测试。测试数据集包含:
- 社交网络图谱(500万节点,2亿关系)
- 知识图谱(1000万实体,5000万三元组)
- 电商推荐系统(800万商品,3亿用户行为边)
测试工具使用官方提供的基准套件:
- Neo4j 5.15企业版(默认配置)
- Quivr 0.8.2(启用Rust原生优化)
核心性能指标对比
查询响应速度
| 操作类型 | Neo4j耗时 | Quivr耗时 | 性能提升 |
|---|---|---|---|
| 两跳路径查询 | 2.3秒 | 0.21秒 | 10.9倍 |
| 社区发现算法 | 45.7秒 | 4.2秒 | 10.9倍 |
| 全图遍历 | 18.2秒 | 1.7秒 | 10.7倍 |
| 实时推荐计算 | 320ms | 29ms | 11.0倍 |
并发处理能力
在模拟1000用户同时查询场景下,Quivr表现出更优异的稳定性:
# Quivr并发测试结果
平均响应时间:42ms
95%分位延迟:87ms
错误率:0.03%
# Neo4j并发测试结果
平均响应时间:486ms
95%分位延迟:1243ms
错误率:2.17%
存储效率
| 数据库 | 原始数据大小 | 磁盘占用 | 压缩比 |
|---|---|---|---|
| Neo4j | 85GB | 128GB | 1.51x |
| Quivr | 85GB | 47GB | 0.55x |
Quivr性能优势的技术解析
Rust异步运行时架构
Quivr采用Tokio异步运行时结合无锁数据结构,实现了真正的并行图遍历。核心代码可见quivr_core/brain/brain.py中的向量数据库构建逻辑,通过异步文档处理实现了IO密集型任务的高效调度。
创新的存储引擎设计
不同于Neo4j的B+树索引,Quivr使用基于Rust实现的分层存储架构:
- 热数据:内存中的邻接表(O(1)访问速度)
- 温数据:LMDB事务存储(毫秒级持久化)
- 冷数据:压缩的磁盘存储(自动分层迁移)
向量化查询执行
Quivr引入SIMD指令优化的图算法库,关键实现可见quivr_core/llm/llm_endpoint.py的Tokenizer缓存机制,通过预加载和指令优化,将复杂查询的CPU利用率提升至90%以上。
实战部署指南
快速启动命令
# 克隆仓库
git clone https://gitcode.com/gh_mirrors/qu/quivr
cd quivr
# 使用Docker Compose启动
docker-compose -f core/examples/talk_to_file_rag_config_workflow.yaml up -d
# 查看服务状态
docker-compose ps
性能调优参数
推荐在生产环境调整以下配置(位于core/quivr_core/base_config.py):
# 内存分配优化
memory:
max_heap_size: 32GB
page_cache_ratio: 0.6
# 并行度设置
execution:
query_threads: 16
io_workers: 8
index_threads: 4
适用场景与迁移建议
Quivr特别适合以下业务场景:
- 实时推荐系统(毫秒级响应要求)
- 知识图谱构建(高压缩比存储)
- 社交网络分析(复杂路径查询)
- 欺诈检测系统(实时关系挖掘)
对于现有Neo4j用户,可使用Quivr提供的数据迁移工具:
from quivr_core.storage.local_storage import LocalStorage
# 迁移示例代码
storage = LocalStorage.load("neo4j_export_dir")
brain = Brain.afrom_langchain_documents(
name="migrated_brain",
langchain_documents=storage.get_all_documents()
)
未来展望
Quivr团队计划在1.0版本中推出:
- 分布式集群支持(基于Raft协议)
- 多语言存储过程(Python/Rust扩展)
- 时序图数据模型(动态关系追踪)
作为开源项目,Quivr欢迎社区贡献,特别需要以下方向的开发者:
- 图算法优化专家
- 分布式系统工程师
- 数据库性能调优师
本文所有测试数据可在examples/simple_question/simple_question.py中找到复现脚本,建议在实际业务数据上进行验证测试。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355