OpenLLMetry项目中LangChain与vLLM的Trace-ID传递问题解析
2025-06-06 13:19:04作者:宣聪麟
在分布式追踪系统中,Trace-ID的传递是确保调用链路完整性的关键。本文将深入分析OpenLLMetry项目中LangChain与vLLM组件间Trace-ID缺失的问题,并提供解决方案。
问题现象
当开发者同时使用LangChainInstrumentor和vLLM时,虽然两者都配置了相同的追踪收集器,但生成的追踪数据却分散在不同的Trace中。具体表现为:
- LangChain生成的span单独出现在一个Trace中
- vLLM服务端生成的span出现在另一个Trace中
- 两个span之间缺乏父子关系,导致无法完整展现调用链路
技术背景
在OpenTelemetry体系中,上下文传播(Context Propagation)是实现分布式追踪的核心机制。当服务A调用服务B时,服务A需要将当前的Trace-ID和Span-ID等信息通过HTTP头或其他方式传递给服务B,这样服务B生成的span才能与服务A的span关联到同一个Trace中。
问题根源
通过分析代码发现,LangchainInstrumentor在创建新的span时,虽然可以获取到父span的上下文,但没有将这个上下文信息传递给vLLM服务。具体来说:
- LangchainInstrumentor通过_create_llm_span方法创建span
- 该方法虽然可以设置parent_span_context
- 但这些上下文信息没有通过HTTP头等方式传递给vLLM服务
解决方案
要解决这个问题,需要修改LangchainInstrumentor的实现,确保span上下文能够正确传播。关键修改点包括:
- 在创建span时显式设置parent_span_context
- 将追踪上下文信息注入到vLLM的HTTP请求头中
- 确保vLLM服务端能够正确解析这些追踪头信息
具体实现上,可以修改_create_llm_span方法,使其不仅创建span,还负责上下文传播:
def _create_llm_span(
self,
run_id: UUID,
parent_run_id: Optional[UUID],
name: str,
request_type: LLMRequestTypeValues,
metadata: Optional[dict[str, Any]] = None,
) -> Span:
# 获取工作流名称和实体路径
workflow_name = self.get_workflow_name(parent_run_id)
entity_path = self.get_entity_path(parent_run_id)
# 设置父span上下文
if parent_run_id is not None and parent_run_id in self.spans:
parent_span_context = set_span_in_context(self.spans[parent_run_id].span)
else:
parent_span_context = None
# 创建新的span并关联父上下文
span = self.tracer.start_span(
f"{name}.{request_type.value}",
context=parent_span_context,
kind=SpanKind.CLIENT,
attributes={
SpanAttributes.LLM_SYSTEM: "Langchain",
SpanAttributes.LLM_REQUEST_TYPE: request_type.value,
SpanAttributes.TRACELOOP_WORKFLOW_NAME: workflow_name,
SpanAttributes.TRACELOOP_ENTITY_PATH: entity_path,
},
metadata=metadata,
)
return span
实施建议
- 确保vLLM服务端已正确配置OpenTelemetry接收器
- 验证HTTP追踪头(traceparent等)是否正确传递
- 在Jaeger等追踪系统中验证span是否已正确关联
- 考虑在LangChain和vLLM之间添加中间件来统一处理追踪头
总结
Trace-ID的传递问题在分布式系统中很常见,特别是在整合多个开源组件时。通过理解OpenTelemetry的上下文传播机制,并适当修改LangchainInstrumentor的实现,可以确保LangChain和vLLM的追踪数据能够正确关联,从而提供完整的调用链路视图。这对于调试和性能分析大型语言模型应用至关重要。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5