OpenLLMetry项目中LangChain与vLLM的Trace-ID传递问题解析
2025-06-06 20:18:20作者:宣聪麟
在分布式追踪系统中,Trace-ID的传递是确保调用链路完整性的关键。本文将深入分析OpenLLMetry项目中LangChain与vLLM组件间Trace-ID缺失的问题,并提供解决方案。
问题现象
当开发者同时使用LangChainInstrumentor和vLLM时,虽然两者都配置了相同的追踪收集器,但生成的追踪数据却分散在不同的Trace中。具体表现为:
- LangChain生成的span单独出现在一个Trace中
- vLLM服务端生成的span出现在另一个Trace中
- 两个span之间缺乏父子关系,导致无法完整展现调用链路
技术背景
在OpenTelemetry体系中,上下文传播(Context Propagation)是实现分布式追踪的核心机制。当服务A调用服务B时,服务A需要将当前的Trace-ID和Span-ID等信息通过HTTP头或其他方式传递给服务B,这样服务B生成的span才能与服务A的span关联到同一个Trace中。
问题根源
通过分析代码发现,LangchainInstrumentor在创建新的span时,虽然可以获取到父span的上下文,但没有将这个上下文信息传递给vLLM服务。具体来说:
- LangchainInstrumentor通过_create_llm_span方法创建span
- 该方法虽然可以设置parent_span_context
- 但这些上下文信息没有通过HTTP头等方式传递给vLLM服务
解决方案
要解决这个问题,需要修改LangchainInstrumentor的实现,确保span上下文能够正确传播。关键修改点包括:
- 在创建span时显式设置parent_span_context
- 将追踪上下文信息注入到vLLM的HTTP请求头中
- 确保vLLM服务端能够正确解析这些追踪头信息
具体实现上,可以修改_create_llm_span方法,使其不仅创建span,还负责上下文传播:
def _create_llm_span(
self,
run_id: UUID,
parent_run_id: Optional[UUID],
name: str,
request_type: LLMRequestTypeValues,
metadata: Optional[dict[str, Any]] = None,
) -> Span:
# 获取工作流名称和实体路径
workflow_name = self.get_workflow_name(parent_run_id)
entity_path = self.get_entity_path(parent_run_id)
# 设置父span上下文
if parent_run_id is not None and parent_run_id in self.spans:
parent_span_context = set_span_in_context(self.spans[parent_run_id].span)
else:
parent_span_context = None
# 创建新的span并关联父上下文
span = self.tracer.start_span(
f"{name}.{request_type.value}",
context=parent_span_context,
kind=SpanKind.CLIENT,
attributes={
SpanAttributes.LLM_SYSTEM: "Langchain",
SpanAttributes.LLM_REQUEST_TYPE: request_type.value,
SpanAttributes.TRACELOOP_WORKFLOW_NAME: workflow_name,
SpanAttributes.TRACELOOP_ENTITY_PATH: entity_path,
},
metadata=metadata,
)
return span
实施建议
- 确保vLLM服务端已正确配置OpenTelemetry接收器
- 验证HTTP追踪头(traceparent等)是否正确传递
- 在Jaeger等追踪系统中验证span是否已正确关联
- 考虑在LangChain和vLLM之间添加中间件来统一处理追踪头
总结
Trace-ID的传递问题在分布式系统中很常见,特别是在整合多个开源组件时。通过理解OpenTelemetry的上下文传播机制,并适当修改LangchainInstrumentor的实现,可以确保LangChain和vLLM的追踪数据能够正确关联,从而提供完整的调用链路视图。这对于调试和性能分析大型语言模型应用至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1