OpenLLMetry项目中LangChain与vLLM的Trace-ID传递问题解析
2025-06-06 06:32:06作者:宣聪麟
在分布式追踪系统中,Trace-ID的传递是确保调用链路完整性的关键。本文将深入分析OpenLLMetry项目中LangChain与vLLM组件间Trace-ID缺失的问题,并提供解决方案。
问题现象
当开发者同时使用LangChainInstrumentor和vLLM时,虽然两者都配置了相同的追踪收集器,但生成的追踪数据却分散在不同的Trace中。具体表现为:
- LangChain生成的span单独出现在一个Trace中
- vLLM服务端生成的span出现在另一个Trace中
- 两个span之间缺乏父子关系,导致无法完整展现调用链路
技术背景
在OpenTelemetry体系中,上下文传播(Context Propagation)是实现分布式追踪的核心机制。当服务A调用服务B时,服务A需要将当前的Trace-ID和Span-ID等信息通过HTTP头或其他方式传递给服务B,这样服务B生成的span才能与服务A的span关联到同一个Trace中。
问题根源
通过分析代码发现,LangchainInstrumentor在创建新的span时,虽然可以获取到父span的上下文,但没有将这个上下文信息传递给vLLM服务。具体来说:
- LangchainInstrumentor通过_create_llm_span方法创建span
- 该方法虽然可以设置parent_span_context
- 但这些上下文信息没有通过HTTP头等方式传递给vLLM服务
解决方案
要解决这个问题,需要修改LangchainInstrumentor的实现,确保span上下文能够正确传播。关键修改点包括:
- 在创建span时显式设置parent_span_context
- 将追踪上下文信息注入到vLLM的HTTP请求头中
- 确保vLLM服务端能够正确解析这些追踪头信息
具体实现上,可以修改_create_llm_span方法,使其不仅创建span,还负责上下文传播:
def _create_llm_span(
self,
run_id: UUID,
parent_run_id: Optional[UUID],
name: str,
request_type: LLMRequestTypeValues,
metadata: Optional[dict[str, Any]] = None,
) -> Span:
# 获取工作流名称和实体路径
workflow_name = self.get_workflow_name(parent_run_id)
entity_path = self.get_entity_path(parent_run_id)
# 设置父span上下文
if parent_run_id is not None and parent_run_id in self.spans:
parent_span_context = set_span_in_context(self.spans[parent_run_id].span)
else:
parent_span_context = None
# 创建新的span并关联父上下文
span = self.tracer.start_span(
f"{name}.{request_type.value}",
context=parent_span_context,
kind=SpanKind.CLIENT,
attributes={
SpanAttributes.LLM_SYSTEM: "Langchain",
SpanAttributes.LLM_REQUEST_TYPE: request_type.value,
SpanAttributes.TRACELOOP_WORKFLOW_NAME: workflow_name,
SpanAttributes.TRACELOOP_ENTITY_PATH: entity_path,
},
metadata=metadata,
)
return span
实施建议
- 确保vLLM服务端已正确配置OpenTelemetry接收器
- 验证HTTP追踪头(traceparent等)是否正确传递
- 在Jaeger等追踪系统中验证span是否已正确关联
- 考虑在LangChain和vLLM之间添加中间件来统一处理追踪头
总结
Trace-ID的传递问题在分布式系统中很常见,特别是在整合多个开源组件时。通过理解OpenTelemetry的上下文传播机制,并适当修改LangchainInstrumentor的实现,可以确保LangChain和vLLM的追踪数据能够正确关联,从而提供完整的调用链路视图。这对于调试和性能分析大型语言模型应用至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218