OpenLLMetry项目中LangChain与vLLM的Trace-ID传递问题解析
2025-06-06 06:32:06作者:宣聪麟
在分布式追踪系统中,Trace-ID的传递是确保调用链路完整性的关键。本文将深入分析OpenLLMetry项目中LangChain与vLLM组件间Trace-ID缺失的问题,并提供解决方案。
问题现象
当开发者同时使用LangChainInstrumentor和vLLM时,虽然两者都配置了相同的追踪收集器,但生成的追踪数据却分散在不同的Trace中。具体表现为:
- LangChain生成的span单独出现在一个Trace中
- vLLM服务端生成的span出现在另一个Trace中
- 两个span之间缺乏父子关系,导致无法完整展现调用链路
技术背景
在OpenTelemetry体系中,上下文传播(Context Propagation)是实现分布式追踪的核心机制。当服务A调用服务B时,服务A需要将当前的Trace-ID和Span-ID等信息通过HTTP头或其他方式传递给服务B,这样服务B生成的span才能与服务A的span关联到同一个Trace中。
问题根源
通过分析代码发现,LangchainInstrumentor在创建新的span时,虽然可以获取到父span的上下文,但没有将这个上下文信息传递给vLLM服务。具体来说:
- LangchainInstrumentor通过_create_llm_span方法创建span
- 该方法虽然可以设置parent_span_context
- 但这些上下文信息没有通过HTTP头等方式传递给vLLM服务
解决方案
要解决这个问题,需要修改LangchainInstrumentor的实现,确保span上下文能够正确传播。关键修改点包括:
- 在创建span时显式设置parent_span_context
- 将追踪上下文信息注入到vLLM的HTTP请求头中
- 确保vLLM服务端能够正确解析这些追踪头信息
具体实现上,可以修改_create_llm_span方法,使其不仅创建span,还负责上下文传播:
def _create_llm_span(
self,
run_id: UUID,
parent_run_id: Optional[UUID],
name: str,
request_type: LLMRequestTypeValues,
metadata: Optional[dict[str, Any]] = None,
) -> Span:
# 获取工作流名称和实体路径
workflow_name = self.get_workflow_name(parent_run_id)
entity_path = self.get_entity_path(parent_run_id)
# 设置父span上下文
if parent_run_id is not None and parent_run_id in self.spans:
parent_span_context = set_span_in_context(self.spans[parent_run_id].span)
else:
parent_span_context = None
# 创建新的span并关联父上下文
span = self.tracer.start_span(
f"{name}.{request_type.value}",
context=parent_span_context,
kind=SpanKind.CLIENT,
attributes={
SpanAttributes.LLM_SYSTEM: "Langchain",
SpanAttributes.LLM_REQUEST_TYPE: request_type.value,
SpanAttributes.TRACELOOP_WORKFLOW_NAME: workflow_name,
SpanAttributes.TRACELOOP_ENTITY_PATH: entity_path,
},
metadata=metadata,
)
return span
实施建议
- 确保vLLM服务端已正确配置OpenTelemetry接收器
- 验证HTTP追踪头(traceparent等)是否正确传递
- 在Jaeger等追踪系统中验证span是否已正确关联
- 考虑在LangChain和vLLM之间添加中间件来统一处理追踪头
总结
Trace-ID的传递问题在分布式系统中很常见,特别是在整合多个开源组件时。通过理解OpenTelemetry的上下文传播机制,并适当修改LangchainInstrumentor的实现,可以确保LangChain和vLLM的追踪数据能够正确关联,从而提供完整的调用链路视图。这对于调试和性能分析大型语言模型应用至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
517
3.68 K
暂无简介
Dart
759
182
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
874
557
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
Ascend Extension for PyTorch
Python
319
366
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.05 K
521
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
156
React Native鸿蒙化仓库
JavaScript
300
347