OpenLLMetry项目中LangChain与vLLM的Trace-ID传递问题解析
2025-06-06 06:32:06作者:宣聪麟
在分布式追踪系统中,Trace-ID的传递是确保调用链路完整性的关键。本文将深入分析OpenLLMetry项目中LangChain与vLLM组件间Trace-ID缺失的问题,并提供解决方案。
问题现象
当开发者同时使用LangChainInstrumentor和vLLM时,虽然两者都配置了相同的追踪收集器,但生成的追踪数据却分散在不同的Trace中。具体表现为:
- LangChain生成的span单独出现在一个Trace中
- vLLM服务端生成的span出现在另一个Trace中
- 两个span之间缺乏父子关系,导致无法完整展现调用链路
技术背景
在OpenTelemetry体系中,上下文传播(Context Propagation)是实现分布式追踪的核心机制。当服务A调用服务B时,服务A需要将当前的Trace-ID和Span-ID等信息通过HTTP头或其他方式传递给服务B,这样服务B生成的span才能与服务A的span关联到同一个Trace中。
问题根源
通过分析代码发现,LangchainInstrumentor在创建新的span时,虽然可以获取到父span的上下文,但没有将这个上下文信息传递给vLLM服务。具体来说:
- LangchainInstrumentor通过_create_llm_span方法创建span
- 该方法虽然可以设置parent_span_context
- 但这些上下文信息没有通过HTTP头等方式传递给vLLM服务
解决方案
要解决这个问题,需要修改LangchainInstrumentor的实现,确保span上下文能够正确传播。关键修改点包括:
- 在创建span时显式设置parent_span_context
- 将追踪上下文信息注入到vLLM的HTTP请求头中
- 确保vLLM服务端能够正确解析这些追踪头信息
具体实现上,可以修改_create_llm_span方法,使其不仅创建span,还负责上下文传播:
def _create_llm_span(
self,
run_id: UUID,
parent_run_id: Optional[UUID],
name: str,
request_type: LLMRequestTypeValues,
metadata: Optional[dict[str, Any]] = None,
) -> Span:
# 获取工作流名称和实体路径
workflow_name = self.get_workflow_name(parent_run_id)
entity_path = self.get_entity_path(parent_run_id)
# 设置父span上下文
if parent_run_id is not None and parent_run_id in self.spans:
parent_span_context = set_span_in_context(self.spans[parent_run_id].span)
else:
parent_span_context = None
# 创建新的span并关联父上下文
span = self.tracer.start_span(
f"{name}.{request_type.value}",
context=parent_span_context,
kind=SpanKind.CLIENT,
attributes={
SpanAttributes.LLM_SYSTEM: "Langchain",
SpanAttributes.LLM_REQUEST_TYPE: request_type.value,
SpanAttributes.TRACELOOP_WORKFLOW_NAME: workflow_name,
SpanAttributes.TRACELOOP_ENTITY_PATH: entity_path,
},
metadata=metadata,
)
return span
实施建议
- 确保vLLM服务端已正确配置OpenTelemetry接收器
- 验证HTTP追踪头(traceparent等)是否正确传递
- 在Jaeger等追踪系统中验证span是否已正确关联
- 考虑在LangChain和vLLM之间添加中间件来统一处理追踪头
总结
Trace-ID的传递问题在分布式系统中很常见,特别是在整合多个开源组件时。通过理解OpenTelemetry的上下文传播机制,并适当修改LangchainInstrumentor的实现,可以确保LangChain和vLLM的追踪数据能够正确关联,从而提供完整的调用链路视图。这对于调试和性能分析大型语言模型应用至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881