WeatherBenchX项目中的指标实现指南
2025-06-19 15:52:35作者:羿妍玫Ivan
理解WeatherBenchX的指标系统
WeatherBenchX是一个用于气象预测评估的框架,其核心功能之一就是提供了一套完整的指标计算系统。在这个系统中,指标的计算被分解为两个主要部分:
- 统计量(Statistics): 基础计算单元,负责从预测值和真实值中提取原始统计信息
- 指标(Metrics): 基于统计量的聚合结果,计算最终的评估指标值
这种设计使得指标系统具有很好的扩展性和灵活性,用户可以轻松地添加新的评估指标。
指标实现的基本步骤
1. 定义统计量
统计量是构建指标的基础模块。在WeatherBenchX中,统计量分为两类:
- 单变量统计量(PerVariableStatistic): 针对单个气象变量单独计算
- 多变量统计量(MultiVariableStatistic): 考虑多个变量之间的关系进行计算
以均方误差(MSE)为例,我们可以这样实现其统计量:
class SquaredError(base.PerVariableStatistic):
"""计算预测值与真实值的平方误差"""
def compute_per_variable(
self,
predictions: xr.DataArray,
targets: xr.DataArray,
) -> xr.DataArray:
return (predictions - targets) ** 2
2. 构建指标类
指标类需要指定它所依赖的统计量,并定义如何从统计量的聚合结果计算最终指标值。继续以均方根误差(RMSE)为例:
class RMSE(base.PerVariableMetric):
"""均方根误差"""
@property
def statistics(self) -> Mapping[Hashable, base.Statistic]:
return {'SquaredError': SquaredError()}
def _values_from_mean_statistics_per_variable(
self,
statistic_values: Mapping[Hashable, xr.DataArray],
) -> xr.DataArray:
"""从聚合统计量计算最终指标值"""
return np.sqrt(statistic_values['SquaredError'])
实际应用示例
假设我们有一个简单的气象数据集:
import numpy as np
import xarray as xr
# 创建一个简单的测试数据集
ds = xr.Dataset({
'2m_temperature': (['init_time', 'latitude', 'longitude'],
np.ones((2, 32, 64)))
我们可以这样使用自定义的RMSE指标:
# 创建RMSE指标实例
rmse_metric = RMSE()
# 计算指标值
result = rmse_metric(ds['2m_temperature'], ds['2m_temperature'])
print(result)
高级用法
对于更复杂的指标,如需要考虑多个变量相互作用的指标,可以实现MultiVariableStatistic和MultiVariableMetric。例如,计算两个变量之间的协方差:
class Covariance(base.MultiVariableStatistic):
"""计算两个变量间的协方差"""
def compute(
self,
predictions: Mapping[Hashable, xr.DataArray],
targets: Mapping[Hashable, xr.DataArray],
) -> xr.DataArray:
var1_pred = predictions['var1']
var2_pred = predictions['var2']
var1_true = targets['var1']
var2_true = targets['var2']
return (var1_pred - var1_true) * (var2_pred - var2_true)
最佳实践
- 保持统计量的原子性:每个统计量应只负责一个简单的计算任务
- 合理设计指标类:指标类应专注于如何组合统计量,而不是具体计算
- 充分利用xarray的功能:WeatherBenchX基于xarray,可以利用其强大的维度处理和并行计算能力
- 文档化:为每个统计量和指标添加清晰的文档字符串
通过这种模块化的设计,WeatherBenchX使得气象预测评估指标的实现变得简单而灵活,同时也保证了计算的高效性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134