WeatherBenchX项目中的指标实现指南
2025-06-19 15:52:35作者:羿妍玫Ivan
理解WeatherBenchX的指标系统
WeatherBenchX是一个用于气象预测评估的框架,其核心功能之一就是提供了一套完整的指标计算系统。在这个系统中,指标的计算被分解为两个主要部分:
- 统计量(Statistics): 基础计算单元,负责从预测值和真实值中提取原始统计信息
- 指标(Metrics): 基于统计量的聚合结果,计算最终的评估指标值
这种设计使得指标系统具有很好的扩展性和灵活性,用户可以轻松地添加新的评估指标。
指标实现的基本步骤
1. 定义统计量
统计量是构建指标的基础模块。在WeatherBenchX中,统计量分为两类:
- 单变量统计量(PerVariableStatistic): 针对单个气象变量单独计算
- 多变量统计量(MultiVariableStatistic): 考虑多个变量之间的关系进行计算
以均方误差(MSE)为例,我们可以这样实现其统计量:
class SquaredError(base.PerVariableStatistic):
"""计算预测值与真实值的平方误差"""
def compute_per_variable(
self,
predictions: xr.DataArray,
targets: xr.DataArray,
) -> xr.DataArray:
return (predictions - targets) ** 2
2. 构建指标类
指标类需要指定它所依赖的统计量,并定义如何从统计量的聚合结果计算最终指标值。继续以均方根误差(RMSE)为例:
class RMSE(base.PerVariableMetric):
"""均方根误差"""
@property
def statistics(self) -> Mapping[Hashable, base.Statistic]:
return {'SquaredError': SquaredError()}
def _values_from_mean_statistics_per_variable(
self,
statistic_values: Mapping[Hashable, xr.DataArray],
) -> xr.DataArray:
"""从聚合统计量计算最终指标值"""
return np.sqrt(statistic_values['SquaredError'])
实际应用示例
假设我们有一个简单的气象数据集:
import numpy as np
import xarray as xr
# 创建一个简单的测试数据集
ds = xr.Dataset({
'2m_temperature': (['init_time', 'latitude', 'longitude'],
np.ones((2, 32, 64)))
我们可以这样使用自定义的RMSE指标:
# 创建RMSE指标实例
rmse_metric = RMSE()
# 计算指标值
result = rmse_metric(ds['2m_temperature'], ds['2m_temperature'])
print(result)
高级用法
对于更复杂的指标,如需要考虑多个变量相互作用的指标,可以实现MultiVariableStatistic和MultiVariableMetric。例如,计算两个变量之间的协方差:
class Covariance(base.MultiVariableStatistic):
"""计算两个变量间的协方差"""
def compute(
self,
predictions: Mapping[Hashable, xr.DataArray],
targets: Mapping[Hashable, xr.DataArray],
) -> xr.DataArray:
var1_pred = predictions['var1']
var2_pred = predictions['var2']
var1_true = targets['var1']
var2_true = targets['var2']
return (var1_pred - var1_true) * (var2_pred - var2_true)
最佳实践
- 保持统计量的原子性:每个统计量应只负责一个简单的计算任务
- 合理设计指标类:指标类应专注于如何组合统计量,而不是具体计算
- 充分利用xarray的功能:WeatherBenchX基于xarray,可以利用其强大的维度处理和并行计算能力
- 文档化:为每个统计量和指标添加清晰的文档字符串
通过这种模块化的设计,WeatherBenchX使得气象预测评估指标的实现变得简单而灵活,同时也保证了计算的高效性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.26 K
Ascend Extension for PyTorch
Python
231
264
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869