Apache Sling Adapter Annotations 使用教程
2024-08-07 03:12:59作者:晏闻田Solitary
项目介绍
Apache Sling Adapter Annotations 是 Apache Sling 项目的一部分,它实现了 OSGi DS 1.4 组件属性类型注解,用于 Sling 适配器。这些注解在 Apache Sling Adapters 文档页面有详细记录,并且集成测试的代码(位于 src/it/annotations-it/ 目录下)可以帮助理解具体细节。
项目快速启动
环境准备
确保你已经安装了以下工具:
- Java JDK 8 或更高版本
- Git
- Maven
克隆项目
首先,克隆项目到本地:
git clone https://github.com/apache/sling-adapter-annotations.git
cd sling-adapter-annotations
构建项目
使用 Maven 构建项目:
mvn clean install
示例代码
以下是一个简单的示例,展示如何使用 Sling Adapter Annotations:
import org.apache.sling.api.adapter.Adaptable;
import org.apache.sling.api.adapter.AdapterFactory;
import org.osgi.service.component.annotations.Component;
@Component(
service = AdapterFactory.class,
property = {
"adapters=com.example.MyTargetClass",
"adaptables=org.apache.sling.api.resource.Resource"
}
)
public class MyAdapterFactory implements AdapterFactory {
@Override
public <AdapterType> AdapterType getAdapter(Object adaptable, Class<AdapterType> type) {
if (adaptable instanceof Adaptable && type == MyTargetClass.class) {
return (AdapterType) new MyTargetClass((Adaptable) adaptable);
}
return null;
}
}
应用案例和最佳实践
应用案例
Sling Adapter Annotations 常用于需要将 Sling 资源适配到自定义对象的场景。例如,你可能有一个 Resource 对象,需要将其适配为一个 MyCustomObject,以便在业务逻辑中使用。
最佳实践
- 明确适配目标:在编写适配器时,明确适配的目标类和适配的源类。
- 性能考虑:适配器应尽可能高效,避免不必要的计算和资源消耗。
- 单元测试:为适配器编写充分的单元测试,确保其正确性和稳定性。
典型生态项目
Apache Sling Adapter Annotations 是 Apache Sling 生态系统的一部分,与其他项目如 Apache Sling Scripting、Apache Sling Resource Resolver 等紧密集成。这些项目共同构成了一个强大的内容管理框架,适用于构建复杂的 Web 应用和内容管理系统。
相关项目
- Apache Sling Scripting:提供多种脚本引擎支持,如 JSP、HTL 等。
- Apache Sling Resource Resolver:处理资源映射和重写,提供灵活的 URL 管理。
- Apache Sling Commons:提供常用工具和库,支持 Sling 项目的开发。
通过这些项目的协同工作,可以构建出高效、可扩展的 Web 应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.14 K
Ascend Extension for PyTorch
Python
162
183
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
254
90
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
React Native鸿蒙化仓库
JavaScript
240
314
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
617
暂无简介
Dart
613
138
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
644
255