Peft项目中PeftModel在训练模式下生成文本异常问题分析
2025-05-13 18:23:14作者:宣利权Counsellor
问题背景
在使用Peft项目对Mistral-7B-Instruct模型进行参数高效微调时,发现一个值得注意的现象:当PeftModel的is_trainable参数设置为True时,调用generate方法生成的文本会出现质量严重下降的问题。这个问题在训练过程中尤为明显,生成的文本变得毫无意义,完全不符合预期。
问题复现与验证
通过以下步骤可以复现该问题:
- 加载预训练的基础模型
- 加载训练好的Peft适配器
- 将is_trainable参数设为True
- 调用generate方法生成文本
base_model = "mistralai/Mistral-7B-Instruct-v0.2"
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.bfloat16)
peft_dir = "./foo"
device = "cuda"
model = PeftModel.from_pretrained(model, peft_dir, is_trainable=True).to(device)
inputs = tokenizer.encode("[INST]Sing a nice song.[/INST]", return_tensors="pt").to(device)
single_output = model.generate(inputs, max_length=5500, do_sample=True)
print(tokenizer.decode(single_output[0]))
问题原因分析
经过深入调查,发现该问题与训练过程中添加的各种噪声注入机制有关,特别是以下几个方面:
-
NEFTune噪声注入:Peft在训练过程中会自动添加NEFTune噪声,这种噪声虽然有助于提高模型泛化能力,但会严重影响生成文本的质量。
-
Dropout机制:训练模式下启用的Dropout层会随机丢弃部分神经元,导致前向传播过程不稳定。
-
梯度计算影响:训练模式下模型会保留梯度计算图,这与生成过程通常需要的无梯度环境相冲突。
解决方案
针对这个问题,Peft项目提供了明确的解决方法:
- 禁用NEFTune:在生成文本前,需要显式移除NEFTune钩子:
trainer.neftune_hook_handle.remove()
- 重新激活NEFTune:完成生成后,如需继续训练,应重新激活NEFTune:
trainer._trl_activate_neftune(trainer.model)
- 使用评估模式:在生成文本前将模型切换到评估模式:
model.eval()
技术建议
对于需要在训练过程中进行文本生成的场景,建议:
- 在生成前完整保存模型状态
- 禁用所有噪声注入和Dropout机制
- 使用torch.no_grad()上下文管理器
- 生成完成后恢复原始训练状态
这种模式切换虽然增加了复杂度,但能确保生成质量与训练过程互不干扰。
总结
Peft项目中训练模式下的文本生成问题揭示了深度学习模型在不同模式下的行为差异。理解这些差异对于构建复杂的训练-生成混合流程至关重要。通过合理管理模型状态和训练组件,可以确保微调过程和生成过程都能发挥最佳效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869