Ragas项目中生成测试数据集的技术解析:生成与评估的双重机制
2025-05-26 05:25:31作者:谭伦延
概述
在Ragas项目中,构建高质量的测试数据集是一个关键环节。本文将深入探讨该项目如何利用生成式LLM和批判式LLM的协同工作机制,从PDF文档中自动生成问题、上下文和真实答案的三元组数据集。
核心机制
Ragas采用双LLM架构来确保生成数据的质量:
- 生成式LLM:负责从原始PDF内容中提取信息并生成初步的三元组
- 批判式LLM:作为质量把关者,对生成的内容进行严格评估
详细工作流程
数据生成阶段
生成式LLM首先分析PDF文档内容,识别关键信息点,并生成初步的三元组结构。以医疗AI主题为例:
- 原始内容:"AI算法分析医学图像的准确率高于人类放射科医生"
- 生成结果:
- 问题:"AI如何提高医疗诊断准确率?"
- 上下文:["AI算法分析医学图像的准确率数据"]
- 答案:"通过分析医学图像实现更高准确率"
质量评估阶段
批判式LLM会对生成内容进行多维度评估:
- 问题质量:检查问题是否明确、具体且与上下文相关
- 答案相关性:验证答案是否真正回应了问题
- 一致性:确保上下文、问题和答案三者逻辑一致
评估采用量化评分机制,通常要求各项指标得分均不低于2分(假设采用5分制)才能通过。
反馈优化机制
当批判式LLM拒绝某些生成内容时,系统会触发自动优化流程:
- 问题修改:调整问题表述使其更具体
- 内容重组:重新组织上下文信息
- 答案精炼:使答案更加准确简洁
例如,初始问题"AI在金融市场的优势"可能被优化为"AI如何提高股票价格预测准确率"。
技术实现细节
模型选择策略
虽然Ragas示例中使用了不同级别的模型(如GPT-3.5生成,GPT-4评估),但实际应用中可以采用同一模型完成双重角色。关键在于:
- 提示工程(Prompt Engineering)的差异化设计
- 评估标准的明确定义
- 迭代优化的实现机制
质量评估算法
批判式LLM的核心算法包括:
- 问题生成验证:从答案反推多个可能的问题,计算与原问题的相似度
- 事实一致性检查:比对生成答案与真实答案的关键事实点
- 语义相关性分析:使用嵌入向量计算内容间的语义距离
实际应用建议
对于希望采用类似技术的开发者,建议:
- 模型选择:初期可使用同一模型担任双重角色降低成本
- 评估标准:建立明确的评分标准和阈值
- 迭代优化:设计自动化的内容优化流程
- 人工审核:关键数据仍需人工抽样验证
总结
Ragas项目展示了一种高效可靠的自动化测试数据集生成方法。通过生成与评估的双重机制,不仅提高了数据生产效率,更确保了产出质量。这种架构设计思路可广泛应用于各类需要高质量文本数据生成的场景,为NLP项目的测试验证提供了有力工具。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143