Ragas项目中生成测试数据集的技术解析:生成与评估的双重机制
2025-05-26 06:26:41作者:谭伦延
概述
在Ragas项目中,构建高质量的测试数据集是一个关键环节。本文将深入探讨该项目如何利用生成式LLM和批判式LLM的协同工作机制,从PDF文档中自动生成问题、上下文和真实答案的三元组数据集。
核心机制
Ragas采用双LLM架构来确保生成数据的质量:
- 生成式LLM:负责从原始PDF内容中提取信息并生成初步的三元组
- 批判式LLM:作为质量把关者,对生成的内容进行严格评估
详细工作流程
数据生成阶段
生成式LLM首先分析PDF文档内容,识别关键信息点,并生成初步的三元组结构。以医疗AI主题为例:
- 原始内容:"AI算法分析医学图像的准确率高于人类放射科医生"
- 生成结果:
- 问题:"AI如何提高医疗诊断准确率?"
- 上下文:["AI算法分析医学图像的准确率数据"]
- 答案:"通过分析医学图像实现更高准确率"
质量评估阶段
批判式LLM会对生成内容进行多维度评估:
- 问题质量:检查问题是否明确、具体且与上下文相关
- 答案相关性:验证答案是否真正回应了问题
- 一致性:确保上下文、问题和答案三者逻辑一致
评估采用量化评分机制,通常要求各项指标得分均不低于2分(假设采用5分制)才能通过。
反馈优化机制
当批判式LLM拒绝某些生成内容时,系统会触发自动优化流程:
- 问题修改:调整问题表述使其更具体
- 内容重组:重新组织上下文信息
- 答案精炼:使答案更加准确简洁
例如,初始问题"AI在金融市场的优势"可能被优化为"AI如何提高股票价格预测准确率"。
技术实现细节
模型选择策略
虽然Ragas示例中使用了不同级别的模型(如GPT-3.5生成,GPT-4评估),但实际应用中可以采用同一模型完成双重角色。关键在于:
- 提示工程(Prompt Engineering)的差异化设计
- 评估标准的明确定义
- 迭代优化的实现机制
质量评估算法
批判式LLM的核心算法包括:
- 问题生成验证:从答案反推多个可能的问题,计算与原问题的相似度
- 事实一致性检查:比对生成答案与真实答案的关键事实点
- 语义相关性分析:使用嵌入向量计算内容间的语义距离
实际应用建议
对于希望采用类似技术的开发者,建议:
- 模型选择:初期可使用同一模型担任双重角色降低成本
- 评估标准:建立明确的评分标准和阈值
- 迭代优化:设计自动化的内容优化流程
- 人工审核:关键数据仍需人工抽样验证
总结
Ragas项目展示了一种高效可靠的自动化测试数据集生成方法。通过生成与评估的双重机制,不仅提高了数据生产效率,更确保了产出质量。这种架构设计思路可广泛应用于各类需要高质量文本数据生成的场景,为NLP项目的测试验证提供了有力工具。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868